DOI QR코드

DOI QR Code

Direct Stacking of Non-metallic Planar Porphyrin to DNA

  • Lee, Min-Ju (Department of Chemistry, Yeungnam University) ;
  • Jin, Biao (Department of Chemistry, Yeungnam University) ;
  • Lee, Hyun-Mee (Department of Chemistry, Yeungnam University) ;
  • Jung, Maeng-Joon (School of Applied Chemical Engineering, Kyungpook National University) ;
  • Kim, Seog K. (Department of Chemistry, Yeungnam University) ;
  • Kim, Jong-Moon (Department of Chemistry, Yeungnam University)
  • Published : 2008.08.20

Abstract

Porphyrins generally bind DNA in two different ways with respect to the mixing ratio; monomeric binding at a low mixing ratio and outside stacking at a high mixing ratio. In the present study, CTDNA binding property of a planar structured porphyrin, 5,10,15,20-tetrakis(N-methyl-4-pyridin-4-yl-phenyl)porphyrin (referred to as B-TMPyP) was investigated using absorption, CD, LD, and $LD^r$ spectroscopies. B-TMPyP produced a bisignate CD band, even at the lowest mixing ratio, indicating that B-TMPyP may not have a monomeric binding mode. From the observations of the spectral changes to the absorption, CD, and LD spectra in mixing ratio dependent titrations, B-TMPyP seems to have a quite different stacking type compared to that for the binding of $H_2$TMPyP. Moreover, B-TMPyP produced a CD band of opposite shape in the Soret band region. A qualitative explanation for the observed optical differences is also given.

Keywords

References

  1. Lang, K.; Mosinger, J.; Wagnerova, D. M. Coord. Chem. Rev. 2004, 248, 321 https://doi.org/10.1016/j.ccr.2004.02.004
  2. Vicente, M. G. Curr. Med. Chem. Anti-Canc. Agents 2001, 1, 175 https://doi.org/10.2174/1568011013354769
  3. Oleinick, N. L.; Evans, H. H. Radiat. Res. 1998, 150, S146 https://doi.org/10.2307/3579816
  4. Fiel, R. J. J. Biomol. Struct. Dyn. 1989, 6, 1259 https://doi.org/10.1080/07391102.1989.10506549
  5. Marzilli, L. G. Jew. J. Chem. 1990, 14, 409
  6. Pasternack, R. F.; Gibbs, E. J. Met. Ions. Biol. Syst. 1996, 33, 367
  7. Park, T.; Kim, J. M.; Han, S. W.; Lee, D.-J.; Kim, S. K. Biochim. Biophy. Acta 2005, 1726, 287 https://doi.org/10.1016/j.bbagen.2005.08.002
  8. Park, T.; Shin, J. S.; Han, S. W.; Son, J. K.; Kim, S. K. J. Phys. Chem. B 2004, 108, 17106 https://doi.org/10.1021/jp0473117
  9. Chen, X.; Liu, M. J. Inorg. Biochem. 2003, 94, 106 https://doi.org/10.1016/S0162-0134(02)00645-1
  10. Lee, S.; Jeon, S. H.; Kim, B.-J.; Han, S. W.; Jang, H. G.; Kim, S. K. Biophy. Chem. 2001, 92, 35 https://doi.org/10.1016/S0301-4622(01)00181-8
  11. Lee, M. J.; Lee, G.-J.; Lee, D.-J.; Kim, S. K.; Kim, J.-M. Bull. Kor. Chem. Soc. 2005, 26, 1728 https://doi.org/10.5012/bkcs.2005.26.11.1728
  12. Yun, B. H.; Jeon, S. H.; Cho, T.-S.; Yi, S. Y.; Sehlstedt, U.; Kim, S. K. Biophys. Chem. 1998, 70, 1 https://doi.org/10.1016/S0301-4622(97)00031-8
  13. Pasternack, R. F. Chirality 2003, 15, 329 https://doi.org/10.1002/chir.10206
  14. Jin, B.; Sub Shin, J.; Hwan Bae, C.; Kim, J.-M.; Kim, S. K. Biochim. Biophy. Acta 2006, 1760, 993 https://doi.org/10.1016/j.bbagen.2006.02.001
  15. Pasternack, R. F.; Gibbs, E. J.; Villafranca, J. J. Biochemistry 1983, 22, 5409 https://doi.org/10.1021/bi00292a024
  16. Kruk, N. N.; Dzhagarov, B. M.; Galievsky, V. A.; Chirvony, V. S.; Turpin, P. Y. J. Photochem. Photobiol. B 1998, 42, 181 https://doi.org/10.1016/S1011-1344(98)00068-2
  17. Lee, Y.-A.; Lee, S.; Cho, T.-S.; Kim, C.; Han, S. W.; Kim, S. K. J. Phys. Chem. B 2002, 106, 11351 https://doi.org/10.1021/jp025924i
  18. Jin, B.; Lee, J.-M.; Lee, Y.-A.; Ko, J. M.; Kim, C.; Kim, S. K. J. Am. Chem. Soc. 2005, 127, 2417 https://doi.org/10.1021/ja044555w
  19. Lee, Y.-E.; Kim, J.-O.; Cho, T.-S.; Song, R.; Kim, S. K. J. Am. Chem. Soc. 2003, 125, 8106 https://doi.org/10.1021/ja034499j
  20. Ismail, M. A.; Rodger, P. M.; Rodger, A. J. Biomol. Struct. Dyn. Convers. 2000, 11, 335
  21. Matsuoka, Y.; Nordén, B. Biopolymers 1983, 22, 1713
  22. Nordén, B.; Kubista, M.; Kurucsev, T. Q. Rev. Biophysics 1992, 25, 51 https://doi.org/10.1017/S0033583500004728
  23. Nordén, B.; Seth, S. Appl. Spectrosc. 1985, 39, 647 https://doi.org/10.1366/0003702854250356
  24. Chen, B.; Wu, S.; Li, A.; Liang, F.; Zhou, X.; Cao, X.; He, Z. Tetrahedron 2006, 62, 5487 https://doi.org/10.1016/j.tet.2006.03.041
  25. Ohyama, T.; Sasagawa, A.; Terui, N.; Mita, H.; Yamamoto, Y. Nucleic Acids Res. 2003, 189
  26. Mukundan, N. E.; Pethö, G.; Dixon, D. W.; Kim, M. S.; Marzilli, L. G. Inorg. Chem. 1994, 33, 4676 https://doi.org/10.1021/ic00099a018
  27. Mukundan, N. E.; Petho, G.; Dixon, D. W.; Marzilli, L. G. Inorg. Chem. 1995, 34, 3677 https://doi.org/10.1021/ic00118a015
  28. Novy, J.; Urbanova, M.; Volka, K. Vib. Spectrosc. 2007, 43, 71 https://doi.org/10.1016/j.vibspec.2006.06.020
  29. Wenting, A.; Xiliang, G.; Shaomin, S.; Chuan, D. J. Photochem. Photobiol. A 2005, 173, 36 https://doi.org/10.1016/j.jphotochem.2004.12.027

Cited by

  1. Retained binding mode of various DNA-binding molecules under molecular crowding condition pp.1538-0254, 2017, https://doi.org/10.1080/07391102.2017.1375992
  2. Plasmon-enhanced photocurrent monitoring of the interaction between porphyrin covalently bonded to graphene oxide and adenosine nucleotides vol.3, pp.11, 2008, https://doi.org/10.1039/c3ra22935a
  3. Plasmon-enhanced photocurrent monitoring of the interaction between porphyrin covalently bonded to graphene oxide and adenosine nucleotides vol.3, pp.11, 2008, https://doi.org/10.1039/c3ra22935a
  4. Formation of J-aggregates in Langmuir-Blodgett films: Effect of stearic acid and nano clay platelets vol.638, pp.1, 2008, https://doi.org/10.1080/15421406.2016.1221944
  5. Bis(phenylethynyl)arene Linkers in Tetracationic Bis‐triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs vol.27, pp.16, 2008, https://doi.org/10.1002/chem.202005141