DOI QR코드

DOI QR Code

Electrochemical Determination of Artemisinin Using a Multi-wall Carbon Nanotube Film-modified Electrode

  • Yang, Xiaofeng (Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Institute for Nationalities) ;
  • Gan, Tian (Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Institute for Nationalities) ;
  • Zheng, Xiaojiang (Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Institute for Nationalities) ;
  • Zhu, Dazhai (Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Institute for Nationalities) ;
  • Wu, Kangbing (Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Institute for Nationalities)
  • Published : 2008.07.20

Abstract

Artemisinin, the effective ingredient of Chinese herb Artemisia annua L (Qinghao in Chinese), has been proved to be effective to antimalarial. Herein, a reliable, sensitive and convenient electrochemical method was developed for the determination of artemisinin utilizing the excellent properties of multi-wall carbon nanotube (MWNT). The electrochemical behavior of artemisinin was investigated. It is found that the reduction peak current of artemisinin remarkably increases and the peak potential shifts positively by 240 mV at the MWNT film-modified electrode. These phenomena indicate that the MWNT film exhibits efficient catalytic activity to the electrochemical reduction of artemisinin. The effects of pH value, amount of MWNT, scan rate and accumulation time were examined. The limit of detection (S/N = 3) is as low as 10 $\mu$ g $L^{-1}$. Finally, this newly developed method was used to determine the content of artemisinin in Artemisia annua L.

Keywords

References

  1. Vennerstrom, J. L.; Barnes, S. A.; Brun, R.; Charman, S. A.; Chiu, F. C. K.; Chollet, J.; Dong, Y. X.; Dorn, A.; Hunziker, D.; Matile, H.; McIntosh, K.; Padmanilayam, M.; Tomas, J. S.; Scheurer, C.; Scorneaux, B.; Tang, Y. Q.; Urwyler, H.; Wittlin, S.; Charman, W. N. Nature 2004, 430, 900 https://doi.org/10.1038/nature02779
  2. Duffy, P. E.; Mutabingwa, T. K. Lancet 2006, 367, 2037 https://doi.org/10.1016/S0140-6736(06)68900-9
  3. Avery, B. A.; Venkatesh, K. K.; Avery, M. A. J. Chromatogr. B 1999, 730, 71 https://doi.org/10.1016/S0378-4347(99)00185-1
  4. Karikari, A. A.; Kishikawa, N.; Ohba, Y.; Nakashima, K.; Kuroda, N. Biomed. Chromatogr. 2006, 20, 1157 https://doi.org/10.1002/bmc.664
  5. Liu, C. Z.; Zhou, H. Y.; Zhao, Y. Anal. Chim. Acta 2007, 581, 298 https://doi.org/10.1016/j.aca.2006.08.038
  6. Singh, B. L.; Singh, D. V.; Verma, R. K.; Gupta, N. M.; Jain, D. C.; Kumar, S. J. Indian Chem. Soc. 2001, 78, 489
  7. Qian, G. P.; Yang, Y. W.; Ren, Q. L. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 705 https://doi.org/10.1081/JLC-200048890
  8. Gabriels, M.; Plaizier-Vercammen, J. A. J. Chromatogr. Sci. 2003, 41, 359 https://doi.org/10.1093/chromsci/41.7.359
  9. Bhandari, P.; Gupta, A. P.; Singh, B.; Kaul, V. K. J. Sep. Sci. 2005, 28, 2288 https://doi.org/10.1002/jssc.200500198
  10. Coimbra, P.; Blanco, M. R.; Silva, H. S.; Gil, M. H.; de Sousa, H. C. J. Chem. Eng. Data 2006, 51, 1097 https://doi.org/10.1021/je060015y
  11. Chen, L. H.; Yin, H.; Yang, Z. X.; Zhang, K. M.; Liu, L. Z.; Shen, H. X. Chinese J. Anal. Chem. 2006, 34, 173 https://doi.org/10.1016/S1872-2040(06)60010-8
  12. Xing, J.; Yan, H. X.; Zhang, S. Q.; Ren, G. L.; Gao, Y. H. Rapid Commun. Mass Spectrom. 2006, 20, 1463 https://doi.org/10.1002/rcm.2467
  13. Chen, H. L.; Wang, K. T.; Pu, Q. S.; Chen, X. G.; Hu, Z. D. Electrophoresis 2002, 23, 2865 https://doi.org/10.1002/1522-2683(200209)23:17<2865::AID-ELPS2865>3.0.CO;2-Q
  14. Chen, Y.; Zhu, S. M.; Chen, H. Y.; Li, Y. Acta Chim. Sinica 1997, 55, 921
  15. Chen, Y.; Zheng, J. M.; Zhu, S. M.; Chen, H. Y. Electrochim. Acta 1999, 44, 2345 https://doi.org/10.1016/S0013-4686(98)00364-8
  16. Chen, H. Y.; Chen, Y.; Zhu, S. M.; Bian, N. S.; Shan, F.; Li, Y. Talanta 1999, 48, 143 https://doi.org/10.1016/S0039-9140(98)00230-6
  17. Yang, P. H.; Zhou, Z. J.; Cai, J. Y. Colloid Surf. A-Physicochem. Eng. Asp. 2005, 257, 467 https://doi.org/10.1016/j.colsurfa.2004.10.090
  18. Debnath, C.; Haslinger, E.; Ortner, A. Natural Product Commun. 2006, 1, 487
  19. Gong, F. C.; Xiao, Z. D.; Cao, Z.; Wu, D. X. Talanta 2007, 72, 1453 https://doi.org/10.1016/j.talanta.2007.01.056
  20. Ajayan, P. M. Chem. Rev. 1999, 99, 1787 https://doi.org/10.1021/cr970102g
  21. Rouse, J. H.; Lillehei, P. T. Nano. Lett. 2003, 3, 59 https://doi.org/10.1021/nl025780j
  22. Britto, P. J.; Santhanam, K. S. V.; Alonso, V.; Rubio, A.; Ajayan, P. M. Adv. Mater. 1999, 11, 154 https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO;2-B
  23. Wang, J.; Musameh, M.; Lin, Y. H. J. Am. Chem. Soc. 2003, 125, 2408 https://doi.org/10.1021/ja028951v
  24. Wu, K. B.; Ji, X. B.; Fei, J. J.; Hu, S. S. Nanotechnology 2004, 15, 287 https://doi.org/10.1088/0957-4484/15/3/010
  25. Wu, K. B.; Hu, S. S.; Fei, J. J.; Wen, B. Anal. Chim. Acta 2003, 489, 215 https://doi.org/10.1016/S0003-2670(03)00718-9
  26. Laviron, E. J. Electroanal. Chem. 1974, 52, 355 https://doi.org/10.1016/S0022-0728(74)80448-1

Cited by

  1. Amperometric Immunosensor for Myeloperoxidase in Human Serum Based on a Multi-wall Carbon Nanotubes-Ionic Liquid-Cerium Dioxide Film-modified Electrode vol.31, pp.11, 2008, https://doi.org/10.5012/bkcs.2010.31.11.3259
  2. Research progress in electroanalytical techniques for determination of antimalarial drugs in pharmaceutical and biological samples vol.6, pp.62, 2008, https://doi.org/10.1039/c6ra05025e
  3. A simple and effective strategy for detecting artemisinin based on oxidative cyclization of vitamin B1 eliciting fluorescence turn-on vol.11, pp.1, 2008, https://doi.org/10.1039/c8ay02312c
  4. A simple and effective strategy for detecting artemisinin based on oxidative cyclization of vitamin B1 eliciting fluorescence turn-on vol.11, pp.1, 2008, https://doi.org/10.1039/c8ay02312c