References
- Alexander, M. L.; Johnson, M. A.; Lineberger, W. C. J. Chem. Phys. 1985, 82, 5288 https://doi.org/10.1063/1.448605
- Engelking, P. C. J. Chem. Phys. 1986, 85, 3103 https://doi.org/10.1063/1.451019
- Ohashi, K.; Nishi, N. J. Chem. Phys. 1991, 95, 4002 https://doi.org/10.1063/1.460807
- Beck, S. M.; Hecht, J. H. J. Chem. Phys. 1992, 96, 1975 https://doi.org/10.1063/1.462099
- Ohashi, K.; Nakai, Y.; Shibata, T.; Nishi, N. Laser Chem. 1994, 14, 3 https://doi.org/10.1155/1994/52450
- Nakai, Y.; Ohashi, K.; Nishi, N. J. Phys. Chem. A 1997, 101, 472 https://doi.org/10.1021/jp961799x
- Ohashi, K.; Nishi, N. J. Chem. Phys. 1998, 109, 3971 https://doi.org/10.1063/1.476996
- Inokuchi, Y.; Nishi, N. J. Chem. Phys. 2001, 114, 7059 https://doi.org/10.1063/1.1359446
- Watanabe, J.; Itakura, R.; Hishikawa, A.; Yamanouchi, K. J. Chem. Phys. 2002, 116, 9697 https://doi.org/10.1063/1.1475753
- Inokuchi, Y.; Ohashi, K.; Honokawa, Y.; Yamamoto, N.; Sekiya, H.; Nishi, N. J. Phys. Chem. A 2003, 107, 4230 https://doi.org/10.1021/jp0225525
- Nam, S. H.; Park, H. S.; Lee, M. A.; Cheong, N. R.; Song, J. K.; Park, S. M. J. Chem. Phys. 2007, 126, 224302 https://doi.org/10.1063/1.2738945
- Sakota, K.; Yamamoto, N.; Ohashi, K.; Sekiya, H.; Saeki, M.; Ishiuchi, S.; Sakai, M.; Fujii, M. Chem. Phys. Lett. 2001, 341, 70 https://doi.org/10.1016/S0009-2614(01)00463-8
- Sakota, K.; Yamamoto, N.; Ohashi, K.; Saeki, M.; Ishiuchi, S.; Sakai, M.; Fujii, M.; Sekiya, H. Chem. Phys. 2002, 286, 209
- Alejandro, E.; Fernandez, J. A.; Castano, F. Chem. Phys. Lett. 2002, 353, 195 https://doi.org/10.1016/S0009-2614(01)01435-X
- Sakota, K.; Yamamoto, N.; Ohashi, K.; Saeki, M.; Ishiuchi, S.; Sakai, M.; Fujii, M.; Sekiya, H. Phys. Chem. Chem. Phys. 2003, 5, 1775 https://doi.org/10.1039/b212035f
- Gibson, E. M.; Jones, A. C.; Taylor, A. G.; Bouwman, W. G.; Phillips, D.; Sandell, J. J. Phys. Chem. 1988, 92, 5449 https://doi.org/10.1021/j100330a024
- Yu, H.; Joslin, E.; Crystall, B.; Smith, T.; Sinclair, W.; Phillips, D. J. Phys. Chem. 1993, 97, 8146 https://doi.org/10.1021/j100133a006
- Huang, L. C. L.; Lin, J. L.; Tzeng, W. B. Chem. Phys. 2000, 261, 449 https://doi.org/10.1016/S0301-0104(00)00290-1
- Borst, D. R.; Korter, T. M.; Pratt, D. W. Chem. Phys. Lett. 2001, 350, 485 https://doi.org/10.1016/S0009-2614(01)01344-6
- Jiang, S.; Levy, D. H. J. Phys. Chem. A 2002, 106, 8590 https://doi.org/10.1021/jp025764a
- Park, H. S.; Nam, S. H.; Song, J. K.; Park, S. M. Int. J. Mass Spectrom. 2007, 262, 73 https://doi.org/10.1016/j.ijms.2006.10.006
- Nam, S. H.; Park, H. S.; Song, J. K.; Park, S. M. J. Phys. Chem. A 2007, 111, 3480 https://doi.org/10.1021/jp067193i
- Kappes, M. M.; Kunz, R. W.; Schumacher, E. Chem. Phys. Lett. 1982, 91, 413 https://doi.org/10.1016/0009-2614(82)83080-7
Cited by
- ≤4) vol.14, pp.4, 2012, https://doi.org/10.1002/cphc.201200790
- Single water solvation dynamics in the 4-aminobenzonitrile–water cluster cation revealed by picosecond time-resolved infrared spectroscopy vol.17, pp.44, 2015, https://doi.org/10.1039/C5CP05400A
- cluster cations with n ≤ 4 vol.141, pp.21, 2014, https://doi.org/10.1063/1.4901893
- Solvent Migration in Microhydrated Aromatic Aggregates: Ionization-Induced Site Switching in the 4-Aminobenzonitrile-Water Cluster vol.20, pp.7, 2014, https://doi.org/10.1002/chem.201303321
- Advantages of time-resolved difference X-ray solution scattering curves in analyzing solute molecular structure vol.21, pp.1, 2010, https://doi.org/10.1007/s11224-009-9521-1
- Competitive Ion-Molecule Reactions within V+(CH3COOCH3)n Clusters vol.31, pp.2, 2008, https://doi.org/10.5012/bkcs.2010.31.02.271
- Intramolecular Ion-Molecule Reactions within Ti+(CH3COCH3)n Heteroclusters: Oxidation Pathway via C=O Bond Activation vol.31, pp.4, 2008, https://doi.org/10.5012/bkcs.2010.31.04.953
- The kinetic energy release in the photodissociation of aniline(water)n+ (n=1–10) clusters at photon energies from 0.43 to 4.66eV vol.506, pp.4, 2008, https://doi.org/10.1016/j.cplett.2011.03.026