DOI QR코드

DOI QR Code

Molecular Simulations for Anti-amyloidogenic Effect of Flavonoid Myricetin Exerted against Alzheimer’s β-Amyloid Fibrils Formation

  • Choi, Young-Jin (Biochip Research Center, Hoseo University) ;
  • Kim, Thomas Donghyun (Department of Biochemistry, University of Chicago) ;
  • Paik, Seung R. (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Jeong, Karp-Joo (College of Information and Communication & Department of Advanced Technology Fusion, Konkuk University) ;
  • Jung, Seun-Ho (Bio/Molecular Informatics Center & Department of Bioscience and Biotechnology, Konkuk University)
  • Published : 2008.08.20

Abstract

Comparative molecular simulations were performed to establish molecular interaction and inhibitory effect of flavonoid myricetin on formation of amyloid fibris. For computational comparison, the conformational stability of myricetin with amyloid $\beta$ -peptide (A$\beta$ ) and $\beta$ -amyloid fibrils (fA$\beta$) were traced with multiple molecular dynamics simulations (MD) using the CHARMM program from Monte Carlo docked structures. Simulations showed that the inhibition by myricetin involves binding of the flavonoid to fA$\beta$ rather than A$\beta$ . Even in MD simulations over 5 ns at 300 K, myricetin/fA$\beta$ complex remained stable in compact conformation for multiple trajectories. In contrast, myricetin/A$\beta$ complex mostly turned into the dissociated conformation during the MD simulations at 300 K. These multiple MD simulations provide a theoretical basis for the higher inhibitory effect of myricetin on fibrillogenesis of fA$\beta$ relative to A$\beta$ . Significant binding between myricetin and fA$\beta$ observed from the computational simulations clearly reflects the previous experimental results in which only fA$\beta$ had bound to the myricetin molecules.

Keywords

References

  1. Pepys, M. B. Annu. Rev. Med. 2006, 57, 223 https://doi.org/10.1146/annurev.med.57.121304.131243
  2. Selkoe, D. J. Nature 2003, 426, 900 https://doi.org/10.1038/nature02264
  3. Sunde, M.; Serpell, L. C.; Bartlam, M. J. Mol. Biol. 1997, 273, 729 https://doi.org/10.1006/jmbi.1997.1348
  4. Harper, J. D.; Lansbury, P. T. Jr. Annu. Rev. Biochem. 1997, 66, 385 https://doi.org/10.1146/annurev.biochem.66.1.385
  5. Rochet, J. C.; Lansbury, P. T. Jr. Curr. Opin. Struct. Biol. 2000, 10, 60 https://doi.org/10.1016/S0959-440X(99)00049-4
  6. Luhrs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Dobeli, H.; Schubert, D.; Riek, R. Proc. Nat. Acad. Sci. USA 2005, 29, 17342
  7. Ono, K.; Yoshiike, Y.; Takashima, A.; Hasegawa, K.; Naiki, H.; Yamada, M. J. Neurochem. 2003, 87, 172 https://doi.org/10.1046/j.1471-4159.2003.01976.x
  8. Hirohata, M.; Hasegawa, K.; Yasuhara, S. T.; Ohhashi, Y.; Ookoshi, T.; Ono, K.; Yamada, M.; Naiki, H. Biochemistry 2007, 46,1888 https://doi.org/10.1021/bi061540x
  9. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187 https://doi.org/10.1002/jcc.540040211
  10. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. J. Chem. Phys. 1953, 21, 1087 https://doi.org/10.1063/1.1699114
  11. Choi, Y.; Park, S.; Jeong, K.; Jung, S. Bull. Korean Chem. Soc. 2007, 28, 1811 https://doi.org/10.5012/bkcs.2007.28.10.1811
  12. Jorgensen, W. L. J. Chem. Phys. 1983, 79, 926 https://doi.org/10.1063/1.445869
  13. Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089 https://doi.org/10.1063/1.464397
  14. Lee, S. H. Bull. Korean Chem. Soc. 2006, 27, 1154 https://doi.org/10.5012/bkcs.2006.27.8.1154
  15. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327 https://doi.org/10.1016/0021-9991(77)90098-5
  16. Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R. J. Chem. Phys. 1995, 103, 4613 https://doi.org/10.1063/1.470648

Cited by

  1. Links between Insulin Resistance, Lipoprotein Metabolism and Amyloidosis in Alzheimer’s Disease vol.06, pp.12, 2014, https://doi.org/10.4236/health.2014.612190
  2. The Flavonoid Derivative 2-(4′ Benzyloxyphenyl)-3-hydroxy-chromen-4-one Protects Against Aβ42-Induced Neurodegeneration in Transgenic Drosophila: Insights from In Silico and In Vivo Studies vol.26, pp.4, 2014, https://doi.org/10.1007/s12640-014-9466-z
  3. Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4′ benzyloxyphenyl)-3-hydroxy-chromen-4-one through docking and molecular dynamics simulations vol.34, pp.6, 2016, https://doi.org/10.1080/07391102.2015.1074943
  4. Myricetin: A Dietary Molecule with Diverse Biological Activities vol.8, pp.2, 2016, https://doi.org/10.3390/nu8020090
  5. The Ethyl Acetate Extract of Leaves of Ugni molinae Turcz. Improves Neuropathological Hallmarks of Alzheimer’s Disease in Female APPswe/PS1dE9 Mice Fed with a High Fat Diet vol.66, pp.3, 2008, https://doi.org/10.3233/jad-180174
  6. Molecular Insights into Destabilization of Alzheimer’s Aβ Protofibril by Arginine Containing Short Peptides: A Molecular Modeling Approach vol.4, pp.1, 2008, https://doi.org/10.1021/acsomega.8b02672