DOI QR코드

DOI QR Code

Suppression of the Methyl Radical Loss from Acetone Cation within (CH3COCH3)n{CH3COCH3}+ Clusters

  • Lee, Yong-Hoon (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Oh, Myoung-Kyu (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Choi, Sung-Chul (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Ko, Do-Kyeong (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Lee, Jong-Min (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology)
  • Published : 2008.08.20

Abstract

We have investigated the photophysics of the acetone radical cation in the vacuum ultraviolet energy region by multiphoton ionization combined with time-of-flight mass spectrometry in a cluster beam. We have found that the loss of methyl radical from the acetone radical cations is remarkably suppressed at 10.5 eV when they are solvated by a few neutral acetone molecules. The cluster ion mass spectra obtained by nanosecond and picosecond laser pulses reveal that there are intermolecular processes, occurring in several tens of picoseconds, which are responsible for the survival of the acetone cations in clusters. This remarkable solvation effect on the yield of the methyl radical loss from the acetone cation can be rationalized by the intracluster vibrational energy redistribution and the self-catalyzed enolization which compete with the methyl radical loss process.

Keywords

References

  1. Cheng, P.-Y.; Baskin, J. S.; Zewail, A. H. PNAS 2006, 103, 10570 https://doi.org/10.1073/pnas.0507114103
  2. Ahn, D.-S.; Lee, S. Bull. Korean Chem. Soc. 2007, 28, 725 https://doi.org/10.5012/bkcs.2007.28.5.725
  3. Holzinger, R.; Lee, A.; Paw, K. T.; Goldstein, A. H. Atmos. Chem. Phys. 2005, 5, 67 https://doi.org/10.5194/acp-5-67-2005
  4. Szopa, S.; Aumont, B.; Madronich, S. Atmos. Chem. Phys. 2005, 5, 2519 https://doi.org/10.5194/acp-5-2519-2005
  5. Marczin, N.; Kharitonov, S. A.; Yacoub, S. M. H.; Barnes, P. J. Disease Markers in Exhaled Breath; Marcel Dekker: New York, 2003
  6. Fogleman, E. A.; Koizumi, H.; Kercher, J. P.; Sztáray, B.; Baer, T. J. Phys. Chem. A 2004, 108, 5288 https://doi.org/10.1021/jp040118s
  7. Nobre, M.; Fernandes, A.; Ferreira da Silva, F.; Antunes, R.; Almeida, D.; Kokhan, V.; Hoffmann, S. V.; Mason, N. J.; Eden, S.; Limao-Vieira, P. Phys. Chem. Chem. Phys. 2008, 10, 550 https://doi.org/10.1039/b708580j
  8. Wei, L.; Yang, B.; Yang, R.; Huang, C.; Wang, J.; Shan, X.; Sheng, L.; Zhang, Y.; Qi, F. J. Phys. Chem. A 2005, 109, 4231 https://doi.org/10.1021/jp0502813
  9. Vacher, J. R.; Jorand, F.; Blin-Simiand, N.; Pasquiers, S. Int. J. Mass Spectrom. 2008, 273, 117 https://doi.org/10.1016/j.ijms.2008.03.011
  10. Majumder, C.; Jayakumar, O. D.; Vatsa, R. K.; Kulshreshtha, S. K.; Mittal, J. P. Chem. Phys. Lett. 1999, 304, 51 https://doi.org/10.1016/S0009-2614(99)00278-X
  11. Zhu, Y. F.; Allman, S. L.; Phillips, R. C.; Garrett, W. R.; Chen, C. H. Chem. Phys. 1996, 202, 175 https://doi.org/10.1016/0301-0104(95)00341-X
  12. Tzeng, W. B.; Wei, S.; Castleman, A. W., Jr. J. Am. Chem. Soc. 1989, 111, 6035 https://doi.org/10.1021/ja00198a010
  13. Trott, W. M.; Blais, N. C.; Walters, E. A. J. Chem. Phys. 1978, 69, 3150 https://doi.org/10.1063/1.437009
  14. Williams, D. H. Acc. Chem. Res. 1977, 10, 286
  15. Burgers, P. C.; Holmes, J. L. Org. Mass Spectrom. 1982, 17, 123 https://doi.org/10.1002/oms.1210170304
  16. Trikoupis, M. A.; Terlouw, J. K. J. Am. Chem. Soc. 1998, 120, 12131 https://doi.org/10.1021/ja983078c
  17. Mourgues, P.; Chamot-Rooke, J.; van der Rest, G.; Nedev, H.; Audier, H. E.; McMahon, T. B. Int. J. Mass Spectrom. 2001, 210/ 211, 429 https://doi.org/10.1016/S1387-3806(01)00447-X
  18. Trikoupis, M. A.; Burgers, P. C.; Ruttink, P. J. A.; Terlouw, J. K. Int. J. Mass Spectrom. 2002, 217, 97 https://doi.org/10.1016/S1387-3806(02)00536-5
  19. Clennan, E. L.; Dobrowolski, P.; Greer, A. J. Am. Chem. Soc. 1995, 117, 9800 https://doi.org/10.1021/ja00144a003
  20. Lee, Y.; Yoon, Y.; Baek, S. J.; Joo, D.-L.; Ryu, J.-s.; Kim, B. J. Chem. Phys. 2000, 113, 2116
  21. Yamada, Y.; Katsumoto, Y.; Ebata, T. Phys. Chem. Chem. Phys. 2007, 9, 1170 https://doi.org/10.1039/b614895f
  22. Hunter, E. P. L.; Lias, S. G. J. Phys. Chem. Ref. Data 1998, 27, 413 https://doi.org/10.1063/1.556018
  23. Hu, Z.; Jin, M.-x.; Xu, X.-s.; Cheng, X.-h.; Ding, D.-j. Front. Phys. China 2006, 3, 275
  24. Lias, S.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, Supplement 1. https://doi.org/10.1063/1.555819