DOI QR코드

DOI QR Code

Crystal Structures and Thermal Properties of 2,6-Dinitrophenol Complexes with Lanthanide Series

  • Kim, Eun-Ju (Department of Chemistry, Chungnam National University) ;
  • Kim, Chong-Hyeak (Center for Chemical Analysis, Korea Research Institute of Chemical Technology) ;
  • Kim, Jae-Kyung (High Explosive Team, Agency for Defense Development) ;
  • Yun, Sock-Sung (Department of Chemistry, Chungnam National University)
  • Published : 2008.06.20

Abstract

2,6-Dinitrophenol (2,6-DNP) complexes with lanthanide series including yttrium (except Pm, Tm, and Lu) have been synthesized and their crystal structures have been analyzed by X-ray diffraction methods. Singlecrystal X-ray structure determinations have been performed at 296 K on the Ce$\rightarrow$Yb species and shown them to be isomorphous, triclinic, P1, a = 8.6558(2)$\rightarrow$8.5605(3) $\AA$, b = 11.8813(3)$\rightarrow$11.6611(4) $\AA$, c = 13.9650(3) $\rightarrow$13.8341(5) $\AA$, $\alpha$ = 73.785(1)$\rightarrow$73.531(2)o, $\beta$ = 74.730(1)→74.903(2)${^{\circ}}$, $\gamma$ = 69.124(1)→ 69.670 $(2){^{\circ}}$, V = 1266.86(5)→1221.53(7) $$\AA^{3}$$, Z = 2. In Ln(III) complexes, three 2,6-DNP ligands coordinate directly to the metal ion in the bidentate fashion. The nine coordinated Ln(III) ion forms slightly distorted tri-capped trigonal prism. There are no water molecules in the crystal lattice. The dependences of metal to ligand bond lengths are discussed on the atomic number of lanthanide elements. The thermal properties of lanthanide complexes of 2,6- DNP have also studied by TG-DTG and DSC thermal analysis methods.

Keywords

References

  1. Zheng, X.-J.; Jin, L.-P.; Gao, S. Inorg. Chem. 2004, 43, 1600 https://doi.org/10.1021/ic0352699
  2. Zhao, B.; Chen, X.-Y.; Cheng, P.; Liao, D.-Z.; Yan, S.-P.; Jiang, Z.-H. J. Am. Chem. Soc. 2004, 126, 15394 https://doi.org/10.1021/ja047141b
  3. Huh, H. S.; Lee, S. W. Bull. Korean Chem. Soc. 2002, 23, 948 https://doi.org/10.1007/s11814-006-0013-3
  4. Huh, H. S.; Lee, S. W. Bull. Korean Chem. Soc. 2006, 27, 1839 https://doi.org/10.5012/bkcs.2006.27.11.1839
  5. Kremer, C.; Torres, J.; Dominguez, S.; Mederos, A. Coord. Chem. Rev. 2005, 249, 567 https://doi.org/10.1016/j.ccr.2004.07.004
  6. Yun, S.-S.; Oh, Y.; Kang, Me-A.; Kim, Y.-I. Bull. Korean Chem. Soc. 2006, 27, 309 https://doi.org/10.5012/bkcs.2006.27.2.309
  7. Harrowfield, J. M.; Weimin, L.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1994, 47, 321 https://doi.org/10.1071/CH9940321
  8. Harrowfield, J. M.; Weimin, L.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1994, 47, 339 https://doi.org/10.1071/CH9940339
  9. Harrowfield, J. M.; Weimin, L.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1994, 47, 349 https://doi.org/10.1071/CH9940349
  10. Harrowfield, J. M.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1994, 47, 359 https://doi.org/10.1071/CH9940359
  11. Choppin, G. R. Pure Apply. Chem. 1971, 27, 23 https://doi.org/10.1351/pac197127010023
  12. Choppin, G. R. J. Less-common Met. 1985, 112, 193 https://doi.org/10.1016/0022-5088(85)90024-4
  13. Suh, H. R.; Suh, H. S.; Yun, S. S.; Lee, E. K.; Kang, S. K. Acta Cryst. 2002, C58, m202
  14. Suh, H. R.; Suh, H. S.; Yun, S. S.; Lee, E. K.; Kang, S. K. Acta Cryst. 2002, E58, m284
  15. Yun, S. S.; Suh, H. R.; Suh, H. S.; Kang, S. K.; Kim, J. K.; Kim, C. H. J. Alloys Comp. 2006, 408-412, 1030 https://doi.org/10.1016/j.jallcom.2004.12.184
  16. Yun, S. S.; Kang, S. K.; Suh, H. R.; Suh, H. S.; Lee, E. K.; Kim, J. K.; Kim, C. H. Bull. Korean Chem. Soc. 2005, 26, 1197 https://doi.org/10.5012/bkcs.2005.26.8.1197
  17. Bruker, SMART (Version 5.625) Data Collection Program; Bruker AXS Inc.: Madison, Wisconsin, USA, 2001
  18. Bruker, SAINT (Version 6.28a) and SADABS (Version 2.03) Data Reduction and Absorption Correction Program; Bruker AXS Inc.: Madison, Wisconsin, USA, 2001
  19. Sheldrick, G. M. SHELXTL (Version 6.12) Structure Analysis Program; Bruker AXS Inc.: Madison, Wisconsin, USA, 2001
  20. Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, 1997; Chapter 30

Cited by

  1. A new photoluminescent silica aerogel based on N-hydroxysuccinimide–Tb(III) complex vol.69, pp.1, 2014, https://doi.org/10.1007/s10971-013-3205-4
  2. Luminescent xerogels obtained through embedding Tb(III) and Eu(III) complexes in silica matrix vol.35, pp.9, 2008, https://doi.org/10.1016/j.optmat.2013.05.025