DOI QR코드

DOI QR Code

Synthesis of Nanocrystalline TiO2 by Sol-Gel Combustion Hybrid Method and Its Application to Dye Solar Cells

  • Han, Chi-Hwan (Electrical & Electronic Materials Research Center, Korea Institute of Energy Research) ;
  • Lee, Hak-Soo (Electrical & Electronic Materials Research Center, Korea Institute of Energy Research) ;
  • Han, Sang-Do (Electrical & Electronic Materials Research Center, Korea Institute of Energy Research)
  • Published : 2008.08.20

Abstract

$TiO_2$ nanopowders were synthesized by new sol-gel combustion hybrid method using acetylene black as a fuel. The dried gels exhibited autocatalytic combustion behaviour. $TiO_2$ nanopowders with an anatase structure and a narrow size distribution were obtained at 400-600 ${^{\circ}C}$. Their crystal structures were examined by powder Xray diffraction (XRD) and their morphology and crystal size were investigated by scanning electron microscopy (SEM). The crystal size of the nanopowders was found to be in the range of 15-20 nm. $TiO_2$ powders synthesized at 500 ${^{\circ}C}$ and 600 ${^{\circ}C}$ were applied to a dye solar cell. An efficiency of 5.2% for the conversion of solar energy to electricity ($J_{sc}$ = 11.79 mA/$cm^2$, $V_{oc}$ = 0.73 V, and FF = 0.58) was obtained for an AM 1.5 irradiation (100 mW/$cm^2$) using the $TiO_2$ nanopowder synthesized by the sol-gel combustion hybrid method at 500 ${^{\circ}C}$.

Keywords

References

  1. Imhof, A.; Pine, D. J. Nature 1997, 389, 948 https://doi.org/10.1038/40105
  2. Yun, H.-S.; Miyazawa, K.; Zhou, H. S.; Honma, I.; Kuwabara, M. Adv. Mater. 2001, 13, 1377 https://doi.org/10.1002/1521-4095(200109)13:18<1377::AID-ADMA1377>3.0.CO;2-T
  3. Choi, S. Y.; Mamak, M.; Coombs, N.; Chopra, N.; Ozin, G. A. Adv. Funct. Mater. 2004, 14, 335 https://doi.org/10.1002/adfm.200305039
  4. Zhong, Z. H.; Han, M. Y. Angew. Chem. Int. Ed. 2005, 44, 3466 https://doi.org/10.1002/anie.200500410
  5. Alexandridis, P.; Athanassiou, L. V.; Hatton, T. A. Langmuir 1995, 11, 2442 https://doi.org/10.1021/la00007a022
  6. Jing, L.; Sun, X.; Shang, J.; Cai, W.; Xu, Z.; Du, Y.; Fu, H. Sol. Energy Mater. Sol. Cells 2003, 79, 133 https://doi.org/10.1016/S0927-0248(02)00393-8
  7. Marple, B. R.; Lima, R. S.; Li, H.; Khor, K. A. Key Eng. Mater. 2006, 309, 739 https://doi.org/10.4028/www.scientific.net/KEM.309-311.739
  8. Petrella, A.; Tamborra, M.; Cozoli, P. D.; Curri, M. L.; Striccoli, M.; Cosma, P.; Fariola, G. M.; Naso, F.; Agostiano, A. Thin Solid Films 2004, 451, 64 https://doi.org/10.1016/j.tsf.2003.10.106
  9. Degussa Technical Bulletin Pigments; 1990; Vol 56, p 13
  10. Ranga Rao, A.; Dutta, V. Sol. Energy Mater. Sol. Cells 2007, 91, 1075 https://doi.org/10.1016/j.solmat.2007.03.001
  11. Montoya, I. A.; Viveros, T.; Dominguez, J. M.; Canales, L. A.; Shifter I. Catal. Letters 1992, 15, 207 https://doi.org/10.1007/BF00770913
  12. Ding, X.-Z.; Qi, Z.-Z.; He, Y. Z. J. Mater. Sci. Lett. 1995, 14, 21 https://doi.org/10.1007/BF02565273
  13. Ohtani, B.; Nishimoto, S.-I. J. Phys. Chem. 1993, 97, 920 https://doi.org/10.1021/j100106a018
  14. Ohtani, B.; Zhang, S.-W.; Nishimoto, S.-I.; Kagiya, T. J. Photochem. Photobiol. A Chem. 1992, 64, 223 https://doi.org/10.1016/1010-6030(92)85109-8
  15. Bischoff, B. L.; Anderson, M. A. Chem. Mater. 1995, 7, 1772 https://doi.org/10.1021/cm00058a004
  16. Wang, C. C.; Ying, J. Y. Chem. Mater. 1999, 11, 3113 https://doi.org/10.1021/cm990180f
  17. Maslow, V. M.; Neganov, A. S.; Borovinskaya, I. P.; Merzhanov, A. G. Fiz. Goren. Vzryva 1978, 14, 73
  18. Han, C.-H.; Gwak, J.; Han, S.-D.; Khatkar, S. P. Materials Letters 2007, 61, 1701 https://doi.org/10.1016/j.matlet.2006.07.114
  19. Chen, W.; Sun, X.; Cai, Q.; Weng, D.; Li, H. Electrochemistry Communications 2007, 9, 382 https://doi.org/10.1016/j.elecom.2006.10.002
  20. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382 https://doi.org/10.1021/ja00067a063

Cited by

  1. Photocatalytic degradation of Amaranth and Brilliant Blue FCF dyes using in situ modified tungsten doped TiO2 hybrid nanoparticles vol.1, pp.7, 2011, https://doi.org/10.1039/c1cy00023c
  2. TiO2-based Nanomaterials with Photocatalytic Properties for the Advanced Degradation of Xenobiotic Compounds from Water. A Literature Survey vol.224, pp.6, 2013, https://doi.org/10.1007/s11270-013-1548-7
  3. Excellent degradation performance of azo dye by metallic glass/titanium dioxide composite powders vol.67, pp.2, 2013, https://doi.org/10.1007/s10971-013-3089-3
  4. and ZnO nanoparticles by selective doping for photocatalytic applications vol.19, pp.1, 2015, https://doi.org/10.1179/1433075X14Y.0000000217
  5. Facile synthesis of nano-crystalline anatase TiO2 and their applications in degradation of Direct blue 199 vol.27, pp.3, 2016, https://doi.org/10.1007/s10854-015-4061-5
  6. Synthesis of Anatase and Rutile TiO2 Crystals for High-Performance Dye-Sensitized Solar Cells vol.1105, pp.1662-8985, 2015, https://doi.org/10.4028/www.scientific.net/AMR.1105.141
  7. Effects of Ageing Periods on Compositions and Sizes of Titanium Dioxide Particles Synthesized by Sol-Gel Technique vol.658, pp.1662-9795, 2015, https://doi.org/10.4028/www.scientific.net/KEM.658.185
  8. Electrode Prepared by an Energy Efficient Pyro-Synthesis for Advanced Lithium-Ion Batteries vol.162, pp.7, 2015, https://doi.org/10.1149/2.0511507jes
  9. Photovoltaics literature survey (No. 67) vol.17, pp.1, 2009, https://doi.org/10.1002/pip.879
  10. Synthesis of Amorphous Er3+-Yb3+ Co-doped TiO2 and Its Application as a Scattering Layer for Dye-sensitized Solar Cells vol.30, pp.1, 2008, https://doi.org/10.5012/bkcs.2009.30.1.219
  11. Hybrid Sol−Gel Combustion Synthesis of Nanoporous Anatase vol.113, pp.42, 2009, https://doi.org/10.1021/jp904563m
  12. Effect of Ionic Liquids with Different Cations in I-/I3- Redox Electrolyte on the Performance of Dye-sensitized Solar Cells vol.32, pp.6, 2008, https://doi.org/10.5012/bkcs.2011.32.6.2058
  13. The Effect of a Sol-gel Formed TiO2 Blocking Layer on the Efficiency of Dye-sensitized Solar Cells vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3629
  14. Efficiency enhancement of dye-sensitized solar cells with addition of additives (single/binary) to ionic liquid electrolyte vol.35, pp.6, 2008, https://doi.org/10.1007/s12034-012-0390-7
  15. Biotemplated Synthesis of Anatase Titanium Dioxide Nanoparticles via Lignocellulosic Waste Material vol.2014, pp.None, 2008, https://doi.org/10.1155/2014/205636
  16. Combustion synthesis in nanostructured reactive systems vol.26, pp.3, 2008, https://doi.org/10.1016/j.apt.2015.03.013
  17. Synthesis and characterization of Titanium dioxide nanopowder for various energy and environmental applications vol.26, pp.p1, 2008, https://doi.org/10.1016/j.matpr.2019.09.203