References
- Imhof, A.; Pine, D. J. Nature 1997, 389, 948 https://doi.org/10.1038/40105
- Yun, H.-S.; Miyazawa, K.; Zhou, H. S.; Honma, I.; Kuwabara, M. Adv. Mater. 2001, 13, 1377 https://doi.org/10.1002/1521-4095(200109)13:18<1377::AID-ADMA1377>3.0.CO;2-T
- Choi, S. Y.; Mamak, M.; Coombs, N.; Chopra, N.; Ozin, G. A. Adv. Funct. Mater. 2004, 14, 335 https://doi.org/10.1002/adfm.200305039
- Zhong, Z. H.; Han, M. Y. Angew. Chem. Int. Ed. 2005, 44, 3466 https://doi.org/10.1002/anie.200500410
- Alexandridis, P.; Athanassiou, L. V.; Hatton, T. A. Langmuir 1995, 11, 2442 https://doi.org/10.1021/la00007a022
- Jing, L.; Sun, X.; Shang, J.; Cai, W.; Xu, Z.; Du, Y.; Fu, H. Sol. Energy Mater. Sol. Cells 2003, 79, 133 https://doi.org/10.1016/S0927-0248(02)00393-8
- Marple, B. R.; Lima, R. S.; Li, H.; Khor, K. A. Key Eng. Mater. 2006, 309, 739 https://doi.org/10.4028/www.scientific.net/KEM.309-311.739
- Petrella, A.; Tamborra, M.; Cozoli, P. D.; Curri, M. L.; Striccoli, M.; Cosma, P.; Fariola, G. M.; Naso, F.; Agostiano, A. Thin Solid Films 2004, 451, 64 https://doi.org/10.1016/j.tsf.2003.10.106
- Degussa Technical Bulletin Pigments; 1990; Vol 56, p 13
- Ranga Rao, A.; Dutta, V. Sol. Energy Mater. Sol. Cells 2007, 91, 1075 https://doi.org/10.1016/j.solmat.2007.03.001
- Montoya, I. A.; Viveros, T.; Dominguez, J. M.; Canales, L. A.; Shifter I. Catal. Letters 1992, 15, 207 https://doi.org/10.1007/BF00770913
- Ding, X.-Z.; Qi, Z.-Z.; He, Y. Z. J. Mater. Sci. Lett. 1995, 14, 21 https://doi.org/10.1007/BF02565273
- Ohtani, B.; Nishimoto, S.-I. J. Phys. Chem. 1993, 97, 920 https://doi.org/10.1021/j100106a018
- Ohtani, B.; Zhang, S.-W.; Nishimoto, S.-I.; Kagiya, T. J. Photochem. Photobiol. A Chem. 1992, 64, 223 https://doi.org/10.1016/1010-6030(92)85109-8
- Bischoff, B. L.; Anderson, M. A. Chem. Mater. 1995, 7, 1772 https://doi.org/10.1021/cm00058a004
- Wang, C. C.; Ying, J. Y. Chem. Mater. 1999, 11, 3113 https://doi.org/10.1021/cm990180f
- Maslow, V. M.; Neganov, A. S.; Borovinskaya, I. P.; Merzhanov, A. G. Fiz. Goren. Vzryva 1978, 14, 73
- Han, C.-H.; Gwak, J.; Han, S.-D.; Khatkar, S. P. Materials Letters 2007, 61, 1701 https://doi.org/10.1016/j.matlet.2006.07.114
- Chen, W.; Sun, X.; Cai, Q.; Weng, D.; Li, H. Electrochemistry Communications 2007, 9, 382 https://doi.org/10.1016/j.elecom.2006.10.002
- Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382 https://doi.org/10.1021/ja00067a063
Cited by
- Photocatalytic degradation of Amaranth and Brilliant Blue FCF dyes using in situ modified tungsten doped TiO2 hybrid nanoparticles vol.1, pp.7, 2011, https://doi.org/10.1039/c1cy00023c
- TiO2-based Nanomaterials with Photocatalytic Properties for the Advanced Degradation of Xenobiotic Compounds from Water. A Literature Survey vol.224, pp.6, 2013, https://doi.org/10.1007/s11270-013-1548-7
- Excellent degradation performance of azo dye by metallic glass/titanium dioxide composite powders vol.67, pp.2, 2013, https://doi.org/10.1007/s10971-013-3089-3
- and ZnO nanoparticles by selective doping for photocatalytic applications vol.19, pp.1, 2015, https://doi.org/10.1179/1433075X14Y.0000000217
- Facile synthesis of nano-crystalline anatase TiO2 and their applications in degradation of Direct blue 199 vol.27, pp.3, 2016, https://doi.org/10.1007/s10854-015-4061-5
- Synthesis of Anatase and Rutile TiO2 Crystals for High-Performance Dye-Sensitized Solar Cells vol.1105, pp.1662-8985, 2015, https://doi.org/10.4028/www.scientific.net/AMR.1105.141
- Effects of Ageing Periods on Compositions and Sizes of Titanium Dioxide Particles Synthesized by Sol-Gel Technique vol.658, pp.1662-9795, 2015, https://doi.org/10.4028/www.scientific.net/KEM.658.185
- Electrode Prepared by an Energy Efficient Pyro-Synthesis for Advanced Lithium-Ion Batteries vol.162, pp.7, 2015, https://doi.org/10.1149/2.0511507jes
- Photovoltaics literature survey (No. 67) vol.17, pp.1, 2009, https://doi.org/10.1002/pip.879
- Synthesis of Amorphous Er3+-Yb3+ Co-doped TiO2 and Its Application as a Scattering Layer for Dye-sensitized Solar Cells vol.30, pp.1, 2008, https://doi.org/10.5012/bkcs.2009.30.1.219
- Hybrid Sol−Gel Combustion Synthesis of Nanoporous Anatase vol.113, pp.42, 2009, https://doi.org/10.1021/jp904563m
- Effect of Ionic Liquids with Different Cations in I-/I3- Redox Electrolyte on the Performance of Dye-sensitized Solar Cells vol.32, pp.6, 2008, https://doi.org/10.5012/bkcs.2011.32.6.2058
- The Effect of a Sol-gel Formed TiO2 Blocking Layer on the Efficiency of Dye-sensitized Solar Cells vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3629
- Efficiency enhancement of dye-sensitized solar cells with addition of additives (single/binary) to ionic liquid electrolyte vol.35, pp.6, 2008, https://doi.org/10.1007/s12034-012-0390-7
- Biotemplated Synthesis of Anatase Titanium Dioxide Nanoparticles via Lignocellulosic Waste Material vol.2014, pp.None, 2008, https://doi.org/10.1155/2014/205636
- Combustion synthesis in nanostructured reactive systems vol.26, pp.3, 2008, https://doi.org/10.1016/j.apt.2015.03.013
- Synthesis and characterization of Titanium dioxide nanopowder for various energy and environmental applications vol.26, pp.p1, 2008, https://doi.org/10.1016/j.matpr.2019.09.203