DOI QR코드

DOI QR Code

Vibrational Analysis and Intermolecular Hydrogen Bonding of Azodicarbonamide in the Pentamer Cluster

  • Lee, Choong-Keun (Department of Chemistry, Chungbuk National University) ;
  • Park, Sun-Kyung (Department of Chemistry, Chungbuk National University) ;
  • Min, Kyung-Chul (Department of Chemistry, Chungbuk National University) ;
  • Kim, Yun-Soo (Department of Advanced Materials Chemistry, Korea University) ;
  • Lee, Nam-Soo (Department of Chemistry, Chungbuk National University)
  • Published : 2008.10.20

Abstract

Pentamer cluster of azodicarbonamide (ADA) based on the crystalline structure was investigated for the equilibrium structure, the stabilization energies, and the vibrational properties at various levels of the density functional theory. Stretching force constants of N${\cdot}{\cdot}{\cdot}$H or O${\cdot}{\cdot}{\cdot}$H, and angle-bending force constants of N-H${\cdot}{\cdot}{\cdot}$N or N-H${\cdot}{\cdot}{\cdot}$O for intermolecular hydrogen bonds in the pentamer cluster were obtained in 0.2-0.5 mdyn/$\AA$ and 1.6-2.0 mdyn$\AA$, respectively. The geometry of central ADA molecule fully hydrogen bonded with other four molecules shows good coincidence to the crystalline structure except the bond distances of N-H. Calculated Raman and infrared spectra of central ADA molecule in cluster represent well the experimental spectra of ADA obtained in the solid state compared to a single molecule. Detailed structural and vibrational properties of central ADA molecule in the pentamer cluster are presented.

Keywords

References

  1. Bryden, J. H. Acta Cryst. 1961, 14, 61 https://doi.org/10.1107/S0365110X61000139
  2. Cromer, D. T.; Larson, A. C. J. Chem. Phys. 1974, 60, 176 https://doi.org/10.1063/1.1680765
  3. Cromer, D. T.; Larson, A. C.; Stewart, R. F. J. Chem. Phys. 1976, 65, 336 https://doi.org/10.1063/1.432773
  4. Florian, J.; Johnson, B. G. J. Phys. Chem. 1994, 98, 3681 https://doi.org/10.1021/j100065a023
  5. Florian, J.; Leszczynski, J; Johnson, B. G. J. Mol. Struct. 1995, 349, 421 https://doi.org/10.1016/0022-2860(95)08799-2
  6. Tam, C. N.; Bour, P.; Eckert, J.; Trouw, F. R. J. Phys. Chem. A 1997, 101, 5877 https://doi.org/10.1021/jp970122m
  7. Torii, H.; Tasumi, T.; Kanazawa, T.; Tasumi, M. J. Phys. Chem. B 1998, 102, 309 https://doi.org/10.1021/jp972879j
  8. Torii, H.; Tasumi, M. J. Phys. Chem. B 1998, 102, 315 https://doi.org/10.1021/jp972880i
  9. Torii, H.; Tasumi, M. Int. J. Quantum Chem. 1998, 70, 241 https://doi.org/10.1002/(SICI)1097-461X(1998)70:2<241::AID-QUA1>3.0.CO;2-U
  10. Aamouche, A.; Ghomi, M.; Coulombeau, C.; Grajcar, L.; Baron, M. H.; Jovic, H.; Berthier, G. J. Phys. Chem. A 1997, 101, 1808 https://doi.org/10.1021/jp962318c
  11. Rabold, A.; Zundel, G. J. Phys. Chem. 1995, 99, 12158 https://doi.org/10.1021/j100032a017
  12. Furer, V. L. J. Mol. Struct. 1998, 449, 53 https://doi.org/10.1016/S0022-2860(98)00363-9
  13. Macoas, E. M. S.; Fausto, R.; Lundell, J.; Pettersson, M.; Khriachtchev, L.; Rasanen, M. J. Phys. Chem. A 2001, 105, 3922 https://doi.org/10.1021/jp003802p
  14. Spieser, S. A. H.; Leeflang, B. R.; Kroon-Batenburg, L. M. J.; Kroon, J. J. Phys. Chem. A 2000, 104, 7333 https://doi.org/10.1021/jp000161p
  15. Nishi, N.; Nakabayashi, T.; Kosugi, K. J. Phys. Chem. A 1999, 103, 10851 https://doi.org/10.1021/jp9929061
  16. Kovacs, A.; Izvekov, V.; Keresztury, G.; Pongor, G. Chem. Phys. 1998, 238, 231 https://doi.org/10.1016/S0301-0104(98)00307-3
  17. Coussan, S.; Bach, A.; Leutwyler, S. J. Phys. Chem. A 2000, 104, 9864 https://doi.org/10.1021/jp000530h
  18. Schaal, H.; Haber, T.; Suhm, M. A. J. Phys. Chem. A 2000, 104, 265 https://doi.org/10.1021/jp9928558
  19. Sorescu, D. C.; Boatz, J. A.; Yhompson, D. L. J. Phys. Chem. A 2001, 105, 5010 https://doi.org/10.1021/jp010289m
  20. Topol, I. A.; Nemukhin, A. V.; Dobrogorskaya, Y. I.; Burt, S. K. J. Phys. Chem. B 2001, 105, 11341 https://doi.org/10.1021/jp011734g
  21. Choi, K.-S.; Kim, H.-Y.; Kim, S.-J. Bull. Korean Chem. Soc. 2005, 26, 119 https://doi.org/10.5012/bkcs.2005.26.1.119
  22. Han, Y.-K.; Kim, J. C.; Jung, J.; Yu, U. Bull. Korean Chem. Soc. 2008, 29, 305 https://doi.org/10.5012/bkcs.2008.29.2.305
  23. Lutz, H. D.; Suchanek, E. Spectrochim. Acta A 2000, 56, 2707 https://doi.org/10.1016/S1386-1425(00)00310-3
  24. Xiang, K.; Pandey, R.; Recio, J. M.; Francisco, E.; Newsam, J. M. J. Phys. Chem. A 2000, 104, 990 https://doi.org/10.1021/jp990171u
  25. Chae, J.-B.; Yu, S.-C.; Lee, Y. Bull. Korean Chem. Soc. 2007, 28, 193 https://doi.org/10.5012/bkcs.2007.28.2.193
  26. Karpfen, A. J. Phys. Chem. 1996, 100, 13474 https://doi.org/10.1021/jp960599i
  27. Ziegler, T. In Density Functional Methods in Chemistry and Materials Science; Springborg, M., Ed.; John Wiley and Sons: U.K., 1997; p 69
  28. Biswas, N.; Umapathy, S. J. Phys. Chem. A 1997, 101, 5555 https://doi.org/10.1021/jp970312x
  29. Inoue, K.; Takeuchi, H.; Konaka, S. J. Phys. Chem. A 2001, 105, 6711 https://doi.org/10.1021/jp0045944
  30. Tsuji, T.; Takashima, H.; Takeuchi, H.; Egawa, T.; Konaka, S. J. Phys. Chem. A 2001, 105, 9347 https://doi.org/10.1021/jp004418v
  31. Lee, S.-H.; Krimm, S. Biopolymer 1998, 48, 283
  32. Durig, J. R.; Yu, Z.; Guirgis, G. A. J. Phys. Chem. A 2000, 104, 741 https://doi.org/10.1021/jp992560u
  33. Park, S. K.; Lee, N.-S.; Lee, S.-H. Bull. Korean Chem. Soc. 2000, 21, 959
  34. Lee, S.-H.; Palmo, K.; Krimm, S. J. Comput. Chem. 1999, 20, 1067 https://doi.org/10.1002/(SICI)1096-987X(19990730)20:10<1067::AID-JCC9>3.0.CO;2-V
  35. Rauhut, G.; Pulay, P. J. Phys. Chem. 1995, 99, 3093 https://doi.org/10.1021/j100010a019
  36. Hartmann, M.; Radom, L. J. Phys. Chem. A 2000, 104, 968 https://doi.org/10.1021/jp992234e
  37. Legon, A. C.; Rego, C. A. J. Mol. Struct. 1988, 189, 137 https://doi.org/10.1016/0022-2860(88)80220-5
  38. Moore, W. H.; Krimm, S. Proc. Nat. Acad. Sci. USA 1975, 72, 4933 https://doi.org/10.1073/pnas.72.12.4933
  39. Kearley, G. J.; Fillaux, F.; Baron, M.-H.; Bennington, S.; Tomkinson, J. Science 1994, 264, 1285 https://doi.org/10.1126/science.264.5163.1285

Cited by

  1. Prediction of Charge Mobility in Amorphous Organic Materials through the Application of Hopping Theory vol.7, pp.8, 2011, https://doi.org/10.1021/ct2003463
  2. Investigating the Effect of Copper(II) Coordination Compound with Azodicarbonamide Ligand on the Phase-Stabilization of Ammonium Nitrate pp.00442313, 2017, https://doi.org/10.1002/zaac.201700410
  3. Intermolecular Hydrogen Bonding and Vibrational Analysis of N,N-Dimethylformamide Hexamer Cluster vol.30, pp.11, 2008, https://doi.org/10.5012/bkcs.2009.30.11.2595
  4. Intermolecular Hydrogen Bonding and Vibrational Analysis of N,N-Dimethylformamide Hexamer Cluster vol.30, pp.11, 2008, https://doi.org/10.5012/bkcs.2009.30.11.2595