References
- Boudghene Stambouli, A.; Traversa, E. Renew. Sustain Energy Rev. 2002, 6, 295 https://doi.org/10.1016/S1364-0321(01)00015-6
- Davis, F.; Séamus, P.; Higson, J. Biosens. Bioelectron 2007, 22, 1224 https://doi.org/10.1016/j.bios.2006.04.029
- Minteer, S. D.; Liaw, B. Y.; Cooney, M. J. Curr. Opinion Biotechnol. 2007, 18, 228 https://doi.org/10.1016/j.copbio.2007.03.007
- Rabaey, K.; Verstraete, W. Trends Biotechnol. 2005, 23, 291 https://doi.org/10.1016/j.tibtech.2005.04.008
- Choi, Y.; Jung, E.; Park, H.; Jung, S.; Kim, S. Bull. Korean Chem. Soc. 2007, 28, 1591 https://doi.org/10.5012/bkcs.2007.28.9.1591
- Shin, S.-H.; Choi, Y.; Na, S.-H.; Jung, S.; Kim, S. Bull. Korean Chem. Soc. 2006, 27, 281 https://doi.org/10.5012/bkcs.2006.27.2.281
- Cheng, S. A.; Liu, H.; Logan, B. E. Environ. Sci. Technol. 2006, 40, 2426 https://doi.org/10.1021/es051652w
- Liu, H.; Cheng, S. A.; Logan, B. E. Environ. Sci. Technol. 2005, 39, 5488 https://doi.org/10.1021/es050316c
- You, S. J.; Zhao, Q. L.; Zhang, J. N.; Jiang, J. Q.; Zhao, S. Q. J. Power Source 2006, 162, 1409 https://doi.org/10.1016/j.jpowsour.2006.07.063
- Park, D. H.; Zeikus, J. G. Appl. Microbiol. Biotechnol. 2002, 59, 58 https://doi.org/10.1007/s00253-002-0972-1
- Chen, S. A.; Logan, B. E. Electrochem. Commun. 2007, 9, 492 https://doi.org/10.1016/j.elecom.2006.10.023
- Zhang, T.; Zeng, Y. L.; Chen, S. L.; Ai, X. P.; Yang, H. X. Electrochem. Commun. 2006, 8, 349
- Diaz, A. F.; Kanazawa, K. K.; Gardini, G. P. J. Chem. Soc. Chem. Commun. 1797, 14, 635
- Greene, R. L.; Street, G. B. Science 1984, 226, 651 https://doi.org/10.1126/science.226.4675.651
- Parthasarathy, R. V.; Martin, C. R. Nature 1994, 369, 298 https://doi.org/10.1038/369298a0
- Adam, H.; Agata, M.; Andrzej, L. Talanta 1994, 41, 323 https://doi.org/10.1016/0039-9140(94)80129-0
- Li, C. M.; Sun, C. Q.; Song, S.; Choong, V. E.; Maracas, G.; Zhang, X. J. Frontiers Biosci. 2005, 10, 180 https://doi.org/10.2741/1519
- Fan, L. Z.; Joachim, M. Electrochem. Commun. 2006, 8, 937 https://doi.org/10.1016/j.elecom.2006.03.035
- Schroeder, U.; Niessen, J.; Scholz, F. Angew. Chem. Int. Ed. 2003, 42, 2880 https://doi.org/10.1002/anie.200350918
- Niessen, J.; Schroder, U.; Rosenbaum, M.; Scholz, F. Electrochem. Commun. 2004, 6, 571 https://doi.org/10.1016/j.elecom.2004.04.006
- Furukawa, Y.; Moriuchi, T.; Morishima, K. J. Micromech. Microeng. 2006, 16, S220 https://doi.org/10.1088/0960-1317/16/9/S08
- Logan, B. E.; Cheng, S.; Watson, V.; Estadt, G. Environ. Sci. Technol. 2007, 41, 3341 https://doi.org/10.1021/es062644y
- He, Z.; Wagner, N.; Minteer, S. D.; Angenent, L. T. Environ. Sci. Technol. 2006, 40, 5212 https://doi.org/10.1021/es060394f
- Yuan, Y.; Kim, S. Bull. Korean Chem. Soc. 2008, 29, 168 https://doi.org/10.5012/bkcs.2008.29.1.168
- Wilkinson, S.; Klar, J.; Applegarth, E. S. Electroanal. 2006, 18, 2001 https://doi.org/10.1002/elan.200603621
- Cheng, S.; Logan, B. E. Electrochem. Commun. 2007, 9, 492 https://doi.org/10.1016/j.elecom.2006.10.023
- Ieropoulos, I. A.; Greenman, J.; Melhuish, C.; Hart, J. Enz. Microbial Technol. 2005, 37, 238 https://doi.org/10.1016/j.enzmictec.2005.03.006
- Wilkinson, S.; Klar, J.; Applegarth, E. S. Electroanal. 2006, 18, 2001 https://doi.org/10.1002/elan.200603621
Cited by
- Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode vol.14, pp.28, 2012, https://doi.org/10.1039/c2cp40873b
- Immobilization technology: a sustainable solution for biofuel cell design vol.5, pp.2, 2012, https://doi.org/10.1039/C1EE02391H
- Anode modification with capacitive materials for a microbial fuel cell: an increase in transient power or stationary power vol.16, pp.22, 2014, https://doi.org/10.1039/C4CP00923A
- Use of Carbon Nanoparticles for Bacteria Immobilization in Microbial Fuel Cells for High Power Output vol.156, pp.10, 2009, https://doi.org/10.1149/1.3190477
- Field Experiments on Bioelectricity Production from Lake Sediment Using Microbial Fuel Cell Technology vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2189
- A novel layer-by-layer self-assembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell vol.55, pp.9, 2008, https://doi.org/10.1016/j.electacta.2009.12.103
- Optimisation and the efficient design of an Enterobacter cloacae dual-chambered membrane microbial fuel cell for enhanced power generation vol.36, pp.1, 2008, https://doi.org/10.1080/01430750.2013.820145
- Enhancements of Catalyst Distribution and Functioning Upon Utilization of Conducting Polymers as Supporting Matrices in DMFCs: A Review vol.55, pp.1, 2015, https://doi.org/10.1080/15583724.2014.958771
- Bioanode of polyurethane/graphite/polypyrrole composite in microbial fuel cells vol.21, pp.2, 2016, https://doi.org/10.1007/s12257-015-0628-5
- Bioanode of polyurethane/graphite/polypyrrole composite in microbial fuel cells vol.21, pp.2, 2016, https://doi.org/10.1007/s12257-015-0628-5
- Stepping Toward Self-Powered Papertronics: Integrating Biobatteries into a Single Sheet of Paper vol.2, pp.1, 2008, https://doi.org/10.1002/admt.201600194
- Carbon‐Based Microbial‐Fuel‐Cell Electrodes: From Conductive Supports to Active Catalysts vol.29, pp.8, 2008, https://doi.org/10.1002/adma.201602547
- Ternary Composite of Polyaniline Graphene and TiO2 as a Bifunctional Catalyst to Enhance the Performance of Both the Bioanode and Cathode of a Microbial Fuel Cell vol.57, pp.19, 2008, https://doi.org/10.1021/acs.iecr.7b05314
- Perspective View on Materialistic, Mechanistic and Operating Challenges of Microbial Fuel Cell on Commercialisation and Their Way Ahead vol.4, pp.5, 2008, https://doi.org/10.1002/slct.201802694
- A Thin Layer of Activated Carbon Deposited on Polyurethane Cube Leads to New Conductive Bioanode for (Plant) Microbial Fuel Cell vol.13, pp.3, 2020, https://doi.org/10.3390/en13030574
- Modification of PPy‐NW Anode by Carbon Dots for High‐performance Mini‐microbial Fuel Cells vol.20, pp.2, 2008, https://doi.org/10.1002/fuce.201900210
- A Carbon-Cloth Anode Electroplated with Iron Nanostructure for Microbial Fuel Cell Operated with Real Wastewater vol.12, pp.16, 2008, https://doi.org/10.3390/su12166538
- A 3D porous nitrogen-doped carbon nanotube sponge anode modified with polypyrrole and carboxymethyl cellulose for high-performance microbial fuel cells vol.50, pp.12, 2008, https://doi.org/10.1007/s10800-020-01488-z
- Enhanced removal of Cr(VI) via in-situ synergistic reduction and fixation by polypyrrole/sugarcane bagasse composites vol.272, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2021.129606
- Microwave-treated Expandable Graphite Granule for Enhancing the Bioelectricity Generation of Microbial Fuel Cells vol.12, pp.3, 2008, https://doi.org/10.33961/jecst.2020.01739
- A new modification method of metal substrates via candle soot to prepare effective anodes in air‐cathode microbial fuel cells vol.97, pp.1, 2008, https://doi.org/10.1002/jctb.6928