DOI QR코드

DOI QR Code

Synthesis of Methyl-substituted Bicyclic Carbanucleoside Analogs as Potential Antiherpetic Agents

  • Kim, Kyung-Ran (Laboratory of Medicinal Chemistry, College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Park, Ah-Young (Laboratory of Medicinal Chemistry, College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Lee, Hyung-Rock (Laboratory of Medicinal Chemistry, College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Kang, Jin-Ah (Laboratory of Medicinal Chemistry, College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Kim, Won-Hee (Laboratory of Medicinal Chemistry, College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Chun, Pu-Soon (Laboratory of Medicinal Chemistry, College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Bae, Jang-Ho (Laboratory of Medicinal Chemistry, College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Jeong, Lak-Shin (Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University) ;
  • Moon, Hyung-Ryong (Laboratory of Medicinal Chemistry, College of Pharmacy and Research Institute for Drug Development, Pusan National University)
  • Published : 2008.10.20

Abstract

Novel bicyclo[3.1.0]hexanyl purine nucleoside analogues were synthesized as potential antiherpetic agents via a bicyclo[3.1.0]hexanol (${\pm}$)-8, which was prepared using a highly efficient carbenoid cycloaddition reaction. A highly diastereoselective reduction of ketone and a Mitsunobu reaction for the condensation of glycosyl donor (${\pm}$)-12 with 6-chloropurine were employed.

Keywords

References

  1. Elion, G. B.; Furman, P. A.; Fyfe, J. A.; de Miranda, P.; Beauchamp, L.; Schaeffer, H. J. Proc. Natl. Acad. Sci. USA 1977, 74, 5716 https://doi.org/10.1073/pnas.74.12.5716
  2. Schaeffer, H. J.; Beauchamp, L.; de Miranda, P.; Elion, G. B.; Bauer, D. J.; Collins, P. Nature 1978, 272, 583 https://doi.org/10.1038/272583a0
  3. Spector, S. A.; McKinley, G. F.; Lalezari, J. P.; Samo, T.; Andruczk, R.; Follansbee, S.; Sparti, P. D.; Havlir, D. V.; Simpson, G.; Buhles, W.; Wong, R.; Stempien, M. N. Engl. J. Med. 1996, 334, 1491 https://doi.org/10.1056/NEJM199606063342302
  4. Vere Hodge, R. A.; Cheng, Y. C. Antiviral Chem. Chemother. 1993, 4, 13 https://doi.org/10.1177/09563202930040S601
  5. Marquez, V. E.; Siddiqui, M. A.; Ezzitouni, A.; Russ, P.; Wang, J.; Wagner, R. W.; Matteucci, M. D. J. Med. Chem. 1996, 39, 3739 https://doi.org/10.1021/jm960306+
  6. Altona, C.; Sundaralingam, M. J. Am. Chem. Soc. 1972, 94, 8205 https://doi.org/10.1021/ja00778a043
  7. Van Roey, P.; Salerno, J. M.; Duax, W. L.; Chu, C. K.; Ahn, M. K.; Schinazi, R. F. J. Am. Chem. Soc. 1988, 110, 2277 https://doi.org/10.1021/ja00215a044
  8. Van Roey, P.; Salerno, J. M.; Chu, C. K.; Schinazi, R. F. Proc. Natl. Acad. Sci. USA 1989, 86, 3929 https://doi.org/10.1073/pnas.86.11.3929
  9. Van Roey, P.; Taylor, E. W.; Chu, C. K.; Schinazi, R. F. Ann. N. Y. Acad. Sci. 1990, 616, 29 https://doi.org/10.1111/j.1749-6632.1990.tb17825.x
  10. Moon, H. R.; Kim, H. O.; Chun, M. W.; Jeong, L. S.; Marquez, V. E. J. Org. Chem. 1999, 64, 4733 https://doi.org/10.1021/jo990010m
  11. Shin, K. J.; Moon, H. R.; George, C.; Marquez, V. E. J. Org. Chem. 2000, 65, 2172 https://doi.org/10.1021/jo9917691
  12. Lee, J. A.; Moon, H. R.; Kim, H. O.; Kim, K. R.; Lee, K. M.; Kim, B. T.; Hwang, K. J.; Chun, M. W.; Jacobson, K. A.; Jeong, L. S. J. Org. Chem. 2005, 70, 5006 https://doi.org/10.1021/jo0503207
  13. Park, A.-Y.; Moon, H. R.; Kim, K. R.; Chun, M. W.; Jeong, L. S. Org. Biol. Chem. 2006, 4, 4065 https://doi.org/10.1039/b612537a
  14. McElwee-White, L.; Dougherty, D. A. J. Am. Chem. Soc. 1984, 106, 3466 https://doi.org/10.1021/ja00324a014
  15. Choi, Y.; George, C.; Comin, M. J.; Barchi, J. J. Jr.; Kim, H. S.; Jacobson, K. A.; Balzarini, J.; Mitsuya, H.; Boyer, P. L.; Hughes, S. H.; Marquez, V. E. J. Med. Chem. 2003, 46, 3292 https://doi.org/10.1021/jm030116g
  16. Kim, S.-A.; Jacobson, K. A.; Kim, H. S. Bull. Korean Chem. Soc. 2005, 26, 1503 https://doi.org/10.5012/bkcs.2005.26.10.1503
  17. Jenny, T. F.; Horlacher, J.; Previsani, N.; Benner, S. A. Helv. Chim. Acta 1992, 75, 1994
  18. Bonnal, C.; Chavis, C.; Lucas, M. J. Chem. Soc., Perkin Trans. 1 1994, 1401
  19. Jeong, L. S.; Yoo, S. J.; Moon, H. R.; Kim, Y. H.; Chun, M. W. J. Chem. Soc., Perkin Trans. 1 1998, 3325
  20. Kim, K. R.; Moon, H. R.; Park, A.-Y.; Chun, M. W.; Jeong, L. S. Bioorg. Med. Chem. 2007, 15, 227 https://doi.org/10.1016/j.bmc.2006.09.066
  21. Kim, A.; Hong, J. H. Bull. Korean Chem. Soc. 2005, 26, 1767 https://doi.org/10.5012/bkcs.2005.26.11.1767
  22. Kim, A.; Hong, J. H. Bull. Korean Chem. Soc. 2006, 27, 976 https://doi.org/10.5012/bkcs.2006.27.7.976
  23. Li, H.; Hong, J. H. Bull. Korean Chem. Soc. 2007, 28, 1645 https://doi.org/10.5012/bkcs.2007.28.10.1645

Cited by

  1. ChemInform Abstract: Synthesis of Methyl-Substituted Bicyclic Carbanucleoside Analogues as Potential Antiherpetic Agents. vol.40, pp.10, 2009, https://doi.org/10.1002/chin.200910198
  2. Design and Synthesis of 5"-Iodoneplanocin A and Its Analogues as Potential S-Adenosylhomocysteine Hydrolase Inhibitor vol.29, pp.12, 2008, https://doi.org/10.5012/bkcs.2008.29.12.2487
  3. Synthesis of Neplanocin A Analog with 2′-“up”-C-Methyl Substituent as Potential Anti-HCV Agent vol.30, pp.9, 2008, https://doi.org/10.5012/bkcs.2009.30.9.2043