DOI QR코드

DOI QR Code

Formation and Characterization of Two-Dimensional Arrays of Silver Oxide Nanoparticles under Langmuir Monolayers of n-Hexadecyl Dihydrogen Phosphate

  • Xiao, Fei (Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Shandong University) ;
  • Liu, Hong-Guo (Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Shandong University) ;
  • Lee, Yong-Ill (Department of Chemistry, Changwon National University)
  • 발행 : 2008.12.20

초록

키워드

참고문헌

  1. Evanoff, D. D. Jr.; Chumanov, G. ChemPhysChem 2005, 6, 1221. https://doi.org/10.1002/cphc.200500113
  2. Perez, A.; Dupuis, V.; Tuaillon-Combes, J.; Bardotti, L.; Prevel, B.; Bernstein, E.; Melinon, P.; Favre, L.; Hannour, A.; Jamet, M. Adv. Engineer. Mater. 2005, 7, 475. https://doi.org/10.1002/adem.200400220
  3. Maicas, M.; Rodriguez, M.; Lopez, E.; Sanchez, M. C.; Aroca, C.; Sanchez, P. Computational Mater. Sci. 2002, 25, 525. https://doi.org/10.1016/S0927-0256(02)00330-0
  4. Nawa, N.; Baba, R.; Nakabayashi, S.; Dushkin, C. Nano Lett. 2003, 3, 293. https://doi.org/10.1021/nl0258630
  5. Genov, D. A.; Sarychev, A. K.; Shalaev, V. M.; Wei, A. Nano Lett. 2004, 4, 153. https://doi.org/10.1021/nl0343710
  6. Hossain, M. K.; Shimada, T.; Kitajima, M.; Imura, K.; Okamoto, H. Langmuir 2008, 24, 9241. https://doi.org/10.1021/la8001543
  7. Neve-Oz, Y.; Golosovsky, M.; Frenkel, A.; Davidov, D. Phys. Stat. Sol (a) 2007, 204, 3878. https://doi.org/10.1002/pssa.200776421
  8. Tang, Z.; Kotov, N. A. Adv. Mater. 2005, 17, 951. https://doi.org/10.1002/adma.200401593
  9. Zhao, S.-Y.; Wang, S.; Kimura, K. Langmuir 2004, 20, 1977. https://doi.org/10.1021/la0361520
  10. Liu, Q.; Lu, W.; Ma, A.; Tang, J.; Lin, K.; Fang, J. J. Am. Chem. Soc. 2005, 127, 5276. https://doi.org/10.1021/ja042550t
  11. Shevchenko, E. V.; Talapin, D. V.; Murray, C. B.; O'Brien, S. J. Am. Chem. Soc. 2006, 128, 3620. https://doi.org/10.1021/ja0564261
  12. Gattas-Asfura, K. M.; Constantine, C. A.; Lynn, M. J.; Thimann, D. A.; Ji, X.; Leblanc, R. M. J. Am. Chem. Soc. 2005, 127, 14640. https://doi.org/10.1021/ja0514848
  13. Ji, X.; Wang, C.; Xu, J.; Zheng, J.; Gattas-Asfura, K. M.; Leblanc, R. M. Langmuir 2005, 21, 5377. https://doi.org/10.1021/la050327j
  14. Gotoh, A.; Uchida, K.; Kawai, A.; Kamiya, K.; Ikazaki, F.; Sano, S.; Tsuzuki, A. J. Mater. Sci. Lett. 2003, 22, 1205. https://doi.org/10.1023/A:1025344432702
  15. Sohn, B.-H.; Choi, J.-M.; Yoo, S. I.; Yun, S.-H.; Zin, W.-C.; Jung, J. C.; Kanehara, M.; Hirata, T.; Teranishi, T. J. Am. Chem. Soc. 2003, 125, 6368. https://doi.org/10.1021/ja035069w
  16. Gao, F.; Lu, Q.; Komarneni, S. Chem. Mater. 2005, 17, 856. https://doi.org/10.1021/cm048663t
  17. Swami, A.; Selvakannan, P. R.; Pasricha, R.; Sastry, M. J. Phys. Chem. B 2004, 108, 19269 https://doi.org/10.1021/jp0465581
  18. Khomutov, G. B. Adv. Colloid Interface Sci. 2004, 111, 79. https://doi.org/10.1016/j.cis.2004.07.005
  19. Lifshitz, Y.; Konovalov, O.; Belman, N.; Berman, A.; Golan, Y. Adv. Funct. Mater. 2006, 16, 2398. https://doi.org/10.1002/adfm.200600020
  20. Chiu, Y.; Rambabu, U.; Hsu, M.-H.; Shieh, H.-P. D.; Chen, C.-Y.; Lin, H.-H. J. Appl. Phys. 2003, 94, 1996. https://doi.org/10.1063/1.1589178
  21. Fukaya, T.; Buchel, D.; Shinbori, S.; Tominaga, J.; Tsai, D. P.; Lin, W. C. J. Appl. Phys. 2001, 89, 6139. https://doi.org/10.1063/1.1365434
  22. Chuang, C.-M.; Wu, M.-C.; Su, W.-F.; Cheng, K.-C.; Chen, Y.-F. Appl. Phys. Lett. 2006, 89, 061912. https://doi.org/10.1063/1.2222252
  23. Peyser, L. A.; Vinson, A. E.; Bartko, A. P.; Dickson, R. M. Science 2001, 291, 103. https://doi.org/10.1126/science.291.5501.103
  24. Zhang, X.-Y.; Pan, X.-Y.; Zhang, Q.-F.; Xu, B.-X.; Jiang, H.-B.; Liu, C.-L.; Gong, Q.-H.; Wu, J.-L. Acta Phys.-Chem. Sin. 2003, 19, 203.
  25. Her, Y.-C.; Lan, Y.-C.; Hsu, W.-C.; Tsai, S.-Y. Appl. Phys. Lett. 2003, 83, 2136 https://doi.org/10.1063/1.1609256
  26. Liu, H.-G.; Xiao, F.; Wang, C.-W.; Xue, Q.; Chen, X.; Lee, Y.-I.; Hao, J.; Jiang, J. J. Colloid Interface Sci. 2007, 314, 297. https://doi.org/10.1016/j.jcis.2007.05.048
  27. Liu, H.-G.; Feng, X.-S.; Xue, Q.-B.; Ji, G.-L.; Wang, S.-Y.; Wang, X.-Y.; Qian, D.-J.; Yang, K.-Z. Mater. Lett. 2004, 58, 688. https://doi.org/10.1016/j.matlet.2003.06.013
  28. He, W.; Jiang, C.; Liu, F.; Tai, Z.; Liang, Y.; Guo, Z.; Zhu, L. J. Colloid Interface Sci. 2002, 246, 335. https://doi.org/10.1006/jcis.2001.8046
  29. Zhao, X. K.; Fendler J. H. Chem. Mater. 1991, 3, 168. https://doi.org/10.1021/cm00013a035
  30. Zhao, X. K.; Fendler J. H. J. Phys. Chem. 1991, 95, 3716. https://doi.org/10.1021/j100162a051
  31. Li, C.-M.; Robertson, I. M.; Jenkins, M. L.; Hutchison, J. C.; Doole, R. C. Micron 2005, 36, 9. https://doi.org/10.1016/j.micron.2004.07.001
  32. Gao, X.-Y.; Wang, S.-Y.; Li, J.; Zheng, Y.-X.; Zhang, R.-J.; Zhou, P.; Yang, Y.-M.; Chen, L.-Y. Thin Solid Films 2004, 455-456, 438. https://doi.org/10.1016/j.tsf.2003.11.242
  33. Abe, Y.; Hasegawa, T.; Kawamura, M.; Sasaki, K. Vacuum 2004, 76, 1. https://doi.org/10.1016/j.vacuum.2004.05.003
  34. Lopez-Salido, I.; Lim, D. C.; Kim, Y. D. Surf. Sci. 2005, 588, 6. https://doi.org/10.1016/j.susc.2005.05.021
  35. Luo, K.; St Clair, T. P.; Goodman, D. W. J. Phys. Chem. B 2000, 104, 3050. https://doi.org/10.1021/jp993062o
  36. Murakoshi, K.; Tanaka, H.; Sawai, Y.; Nakato, Y. J. Phys. Chem. B 2002, 106, 3401.
  37. Weaver, J. F.; Hoflund, G. B. J. Phys. Chem. 1994, 98, 8519. https://doi.org/10.1021/j100085a035
  38. Tjeng, L. H.; Meinders, M. B. J.; van Elp, J.; Ghijsen, J.; Sawatzky, G. A. Phys. Rev. B 1990, 41, 3190. https://doi.org/10.1103/PhysRevB.41.3190
  39. Shimizu, K.-i.; Sugino, K.; Kato, K.; Yokota, S.; Okumura, K.; Satsuma, A. J. Phys. Chem. C 2007, 111, 1683. https://doi.org/10.1021/jp066995a

피인용 문헌

  1. Produced Noble Metal Nanoparticles vol.115, pp.45, 2011, https://doi.org/10.1021/jp204937p
  2. Semifluorinated Alkylphosphonic Acids Form High-Quality Self-Assembled Monolayers on Ag-Coated Yttrium Barium Copper Oxide Tapes and Enable Filamentization of the Tapes by Microcontact Printing vol.32, pp.34, 2016, https://doi.org/10.1021/acs.langmuir.6b02368
  3. Green Synthesis of Silver Nanoparticles (AgNPs) from Lenzites betulina and the Potential Synergistic Effect of AgNP and Capping Biomolecules in Enhancing Antioxidant Activity vol.8, pp.3, 2018, https://doi.org/10.1007/s12668-018-0548-x
  4. Poly(9-vinylcarbazole)/silver composite nanotubes and networks formed at the air–water interface vol.116, pp.1, 2010, https://doi.org/10.1002/app.31443
  5. Green Synthesis of Silver Nanoparticles by Sinorhizobial Octasaccharide Isolated from Sinorhizobium meliloti vol.30, pp.7, 2008, https://doi.org/10.5012/bkcs.2009.30.7.1651
  6. Silver dendritic nanostructures formed at the solid/liquid interface via electroless deposition vol.353, pp.2, 2008, https://doi.org/10.1016/j.colsurfa.2009.11.008
  7. Selective hydrogenolysis of glycerol to propanediols on supported Cu-containing bimetallic catalysts vol.12, pp.10, 2010, https://doi.org/10.1039/c0gc00058b