Crystallization Induced Dynamic Resolution and Nucleophilic Substitutions of N-(S)-(1-Phenylethyl)- α-chloro- α-phenyl Acetamide for the Preparation of N -Carboxyalkylated Flavone

Min Hee Lee, Kyoung Hee Kang, Yoon Min Lee, Dajung Kim, and Yong Sun Park*
Department of Chemistry and Bio/Molecular Informatics Center, Konkuk University. Seoul 143-701, Korea
*E-mail: parkyongakonkuk. ac.kr
Received February 11. 2008

Key Words : Crystallization, Resolution, Asymmetric syntheses, Chiral auxiliary, Flavonoids

Chiral auxiliary mediated dynamic resolution of α-halo carboxylic acid derivatives in nucleophilic substitution has been recognized as an effective asymmetric synthetic method in recent years, and several attractive strategies have been discovered. ${ }^{\text {Is }}$ Since α-haloacyl compounds are easily obtained in racemic form and configurational lability of them is readily induced by halide sources, base or polar solvents, dynamic resolution in nucleophilic substitutions at α-halo carbon center can allow easy access to a wide range of enantioenriched α-heteroatom substituted carboxylic acid derivatives. We previously reported a crystallization induced dynamic resolution (CIDR) method for the preparation of optically active α-chloro carbonyl functionality. ${ }^{33}$ One of two diastereomeric species of N-(S)-(1-phenylethyl)- α -chloro- α-aryl acetamides selectively crystallizes from aqueous ammonia solution controlled by the thermodynamics of phase equilibrium as shown in Scheme 1. Here we wish to report recent results on the efficient CIDR and the nucleophilic substitutions of acetamide 1 . The stereospecific nucleophilic substitution with potassium thioacetate can provide a novel thiol chiral auxiliary 5 for dynamic resolution of α-bromo carboxylic acid derivatives in the nucleophilic substitution.

Initial studies to develop the CIDR process have focused on finding more effective solvent system. In order to understand the role of water in the selective crystallization, we have performed a CIDR process in the absence of water. When the solution of α-chloro- α-phenyl acetamide ($\alpha R S S$)-1 and NH_{3} in MeOH was allowed to slowly evaporate, the complete evaporation of MeOH provided 1 as a white solid with 52:48 diastereomeric ratio (dr) as shown in Scheme 1. The low selectivity indicates that water is crucial for an efficient CIDR, reducing the solubility of (αS) - 1 selectively. On the basis of these observations, we set out to find appropriate water and methanol solvent system in which α chloro acetamide (αS)-1 can be selectively precipitated while simultaneously, two epimers of 1 equilibrate in the presence of NH_{3} base.

We therefore investigated several CIDR protocols to establish if there was a relationship between the amount of $\mathrm{NH}_{4} \mathrm{OH}$ used and diastereomeric excess (de) of 1 as illustrated in Figure 1. We have closely monitored the progress of the reactions in terms of \% de by NMR analysis of crude reaction mixture of $1(100 \mathrm{mg})$ in 2 mL of MeOH with various amount of $\mathrm{NH}_{4} \mathrm{OH}$. The results shown in Figure 1(a) clearly indicate that a direct relationship between the amount of $\mathrm{NH}_{4} \mathrm{OH}$ added and de of 1 . As the amount of $\mathrm{NH}_{4} \mathrm{OH}$ added increases, the final de of 1 is improved. However, the addition of 8 mL of $\mathrm{NH}_{4} \mathrm{OH}$ did not provide better de of 1 . Figure l(b) presents the effect of slow addition of $\mathrm{NH}_{4} \mathrm{OH}$ on the CIDR process. Better results in de of 1 were obtained when the additional 4 mL of $\mathrm{NH}_{4} \mathrm{OH}$ was added in four equal portions every 12 h . (condition D, -- --) The CIDR system was further optimized by the use of 1 mL of MeOH , to shorten the required time for the phase equilibration. (condition E. $-\boldsymbol{-}$) Under this condition it is just a matter of time before thermodynamic equilibration is reached, producing ($\alpha S)$-1 with 94% de. The plots show that the amount of MeOH is not crucial for final de of the product.

After a simple evaporation of $\mathrm{NH}_{4} \mathrm{OH},(\alpha S)$ - 1 could be obtained as a white solid in quantitative yield and (α_{S}) - 1 is configurationally stable in the absence of $\mathrm{NH}_{4} \mathrm{OH}$. As an application of the CIDR method to the asymmetric preparation of α-heteroatom substituted carboxylic acid derivatives, we have carried out substitution reactions of α-chloro acetamide (α, S) - 1 with various heteroatom nucleophiles as

Figure 1. Relationship between the anount of $\mathrm{XH}_{4} \mathrm{OH}$ used and de of 1 (100 mg in 2 ml . of MeOHI). The CIISR condition I used I mI, of MeOH for the dissolution of 1.
shown in Table 1. The reactions with amine nucleophiles did not produce the substitution product in the presence of tetrabutylammonium iodide (IBAI) and diisopropylethylamine (DIEA). (entries 1 and 2) On the other hand, when (αS) $\mathbf{- 1}$ ($97: 3 \mathrm{dr}$) was treated with 6-hydroxyflavone and $3,5-$ dimethoxyphenol in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (or NaH), the alkoxide nucleophiles provided the substituted products 2 and 3 in 66% and 57% yields, respectively. In both cases, however, the dr of products is almost $1: 1$. The results in entries 3 and 4 can be taken to suggest that (αS)-1 and/or the substitution products are configurationally labile under strongly basic conditions. As shown in entry 5, treatment of $(\alpha S)-1$ ($97: 3 \mathrm{dr}$) with potassium thioacetate (KSAc) in MeOH at it for 24 h gave a α-acetylthio carboxylic acid derivative $(\alpha R)-4$. We were pleased to observe that no epimerization was observed during the substitution reaction as judged by ${ }^{1} \mathrm{H}$ NMR on the crude reaction mixture ($97: 3$ dr). After column chromatography of crude reaction mixture, optically pure α-acetylthio substituted product (αR)-4 was obtained in 80% yield. Also, the result in entry 6 can rule out the possibility of dynamic resolution of $(\alpha R S)-1$ in nucleophilic substitution with KSAc.
Despite the significance of optically active α-mercapto carboxylic acids in organic synthesis, only a few methods have been reported for asymmetric syntheses of α-mercapto

Table 1. Nucleophilic substilutions of (aS)-1 with various nucleophiles

I	97:3		$\begin{aligned} & \text { TBAI. DIEA. } \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathrm{rt} \end{aligned}$	N.R.	-
2	$97: 3$		$\begin{gathered} \text { TBAI. DIEA. } \\ \mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathrm{rt} \end{gathered}$	N.R.	-
3	97.3		$\begin{gathered} \mathrm{Cs}_{2} \mathrm{CO}_{3} \\ \mathrm{CH}_{3} \mathrm{CN} . \mathrm{H}^{2} \end{gathered}$	66 (2)	53:47
4	97:3		$\begin{gathered} \mathrm{CSO}_{2} \mathrm{CO}_{2} \\ \mathrm{CH}_{3} \mathrm{CN} \cdot \mathrm{Ht} \end{gathered}$	57 (3)	52:48
5	97:3	KSAC	MeOfl. rl	80 (4)	97.3
6	50:50	KSAc	MeOf. it	82 (4)	51:49

carboxylic acid derivatives. ${ }^{1}$ As shown in Scheme 2, we successfully accomplished the conversion of optically pure α-chloro carbonyl functionality to α-mercapto carbonyl functionality by the epimerization free sequences. Deacylation of $(\alpha R)-4$ with acetyl chloride in MeOH produced $(\alpha R)-5$ in 95% yield without any detectable epimerization as judged by ${ }^{1} \mathrm{H}$ NMR, l_{1} addition, the reduction of 4 using an excess amount of $\mathrm{BH}_{3}-\mathrm{THF}$ (5 equiv) in THF provided the expected β-amino thiol 6 in 58% yield. ${ }^{5}$ We then examined the capability of thiol $(\alpha R)-5$ as a chiral auxiliary in nuleophilic substitution of α-bromo carboxylic acid derivatives with amine nucleophiles. The treatment of α-bromo thioester 7 with dibenzylamine (1.2 equiv) in the presence of TBAI and DIEA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature provided the substitution product in 61% yield. Subsequent reductive removal of the chiral auxiliary using LiAlH_{+}in THF furnished the enantioenriched β-amino alcohol $(R)-8$ in 55% yield with $84: 16$ enantiomeric ratio (er). ${ }^{6}$

Flavones are plant products with many biological and pharmacological activities. A number of O-alkylated and N alkylated flavones have recently been prepared to improve their biochemical and pharmacological properties of naturally occurring flavones. ${ }^{7}$ In our continuing investigation on the stereoselective preparation of alkylated flavonoids and their activity studies. ${ }^{8}$ we have attempted to prepare N-carboxyalkylated flavones by the chiral auxiliary 5 mediated dynamic resolution of α-bromo thioester 7. As shown in Scheme 2. treatment of α-bromo thioester 7 with 6 -aminoflavone (1.2 equiv) in the presence of TBAI and DJEA for 24 h provided

Scheme 2
the substitution product in 70% yield. Subsequent removal of the chiral auxiliary with EtOH and $\mathrm{Bu}{ }_{3} \mathrm{P}$ gave I-phenyl-glycine-flavone conjugate (R)-9 in 66% yield with $80: 20 \mathrm{er}$.
We conclude that CIDR of $N-(S)$-((- phenylethyl)- $\alpha-$ chloro- α-phenyl acetamide \mathbf{I} is effectively promoted by addition of $\mathrm{NH}_{4} \mathrm{OH}$. It has been found that slow addition of $\mathrm{NH}_{4} \mathrm{OH}$ in portions gave better selectivities than the addition at once. Stereospecific nucleophilic substitution of 1 with a thio nucleophile (KSAc) and subsequent deacylation can provide thiol 5 , which can be used as a chiral auxiliary for the preparation of enantioenriched β-amino alcohol 8 and N alkylated flavone 9 by the nucleophilic substitutions of 7 . Further studies to extend the scope of the methodology for the preparation of various N-carboxyalkylated flavones are underway.

Experimental

Crystallization induced dynamic resolution of N-(S)-(1-phenylethyl)- α-chloro- α-phenyl acetamides ((α RS)1). Jo a solution of ($\alpha R S$)-1 ($100 \mathrm{mg}, 0.36 \mathrm{mmol}$) in MeOH $(1 \mathrm{~mL})$ at nt was added 2 mL of $\mathrm{NH}_{+} \mathrm{OH}$. The resulting reaction mixture was stirred at i.t. for 2 days, adding 4 mL of $\mathrm{NH}_{4} \mathrm{OH}$ in four equal portions every 12 hours. Simple evaporation of reaction mixture gave $(\alpha S)-1$ as a white solid in quantitative yield. The dr of 1 was determined to be $97: 3$ by ${ }^{1} \mathrm{H}$ NMR using the integration of α-chloromethine protons. ${ }^{1} \mathrm{H}$ NMR (CDClis, 400 MHz) 7.49-7.24 (m, 10H), 6.98 (br, $1 \mathrm{H}), 5.11(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
General procedure for the preparation of 2 and 3 . To a solution of α-chloroacetamide 1 (1.5 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.1$ M) at it was added a hydroxy nucleophile (1.0 equiv) and
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.0 equiv). After the resulting reaction mixture was stirred at rt for 24 h , the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The resulting mixture was extracted with FtOAc twice and the combined extracts were washed with brine. The solvent was evaporated and the crude material was purified by column chromatography.
N-(S)-(1-Phenylethyl)- α-(6-flavonoxy)- α-phenyl acetamide (2). 66% yield; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $7.81-$ $7.18(\mathrm{~m}, 18 \mathrm{H}) .6 .68(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73,5.69(\mathrm{~s}, 1 \mathrm{H}$, two peaks), $5.16(\mathrm{~m}, \mathrm{IH}), \mathrm{I} .50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} .100 \mathrm{MH} 7$) 178.2. 168.7, 163.8, 154.4, 152.5, 143.2. $136.4,132.1,129.4,129.2,129.1 .129 .0,127.8,127.3$. 126.7, 126.6, 126.5, 125.1, 124.0, 120.2, 110.3, 107.1, 81.2. 49.1, 22.1.
N-(S)-(1-Phenylethyl)- α-(3,5-dimethoxyphenoxy)- $\alpha-$ phenyl acetamide (3). 57% yield: ${ }^{1} \mathrm{H}$ NMR (CDCls., 400 $\mathrm{MHz}) 7.54-7.18(\mathrm{~m} .10 \mathrm{H}), 6.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, \mathrm{IH}), 6.13-$ $6.09(\mathrm{~m}, 3 \mathrm{H}), 5.53 .5 .50(\mathrm{~s} .1 \mathrm{H}$, two peaks), $5.10(\mathrm{~m}, \mathrm{IH})$, $3.75,3.66(\mathrm{~s}, 3 \mathrm{H}$, two peaks), I.48, $1.45(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, two peaks); ${ }^{1.3} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MH}$. $) 169.3,162.0$. 159.0, 143.2, 136.8. 129.1, I29.0. 127.8, 127.0, I26.5.95.2. 95.0. 94.7, 80.9. 55.8, 49.0, 22.2.

Preparation of N-(S)-(1-phenylethyl)- α-acetylthio- $\alpha-$ phenyl acetamide ((αR R)-4). To a solution of $(\alpha \alpha S)-1$ (139 $\mathrm{mg}, 0.51 \mathrm{mmol}, 97: 3 \mathrm{dr}$) in 3 mL of MeOH was added potassium thioacetate (KSAc. 1.2 equiv) under a nitrogen atmosphere. The resulting material was stirred for 24 h at r.t. followed by regular extractive work up and column chromatography to give α-acetylthio substituted product ($127 \mathrm{mg},>99: 1 \mathrm{dr}$ determined by ${ }^{1} \mathrm{H}$ NMR and HPLC) as a colorless oil in 80% yield. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3,}, 400 \mathrm{MH} 7$) $7.37-7.14(\mathrm{~m}, 10 \mathrm{H}), 6.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .5 .23(\mathrm{~s}, 1 \mathrm{H})$, $5.07(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl3, 100 MH 7 .) 195.4, 168.5, 143.1, 136.2, 129.3. $129.0,128.99,128.7,127.7,126.4,52.6,49.8,30.5,22.0$.

Preparation of N-(S)-(1-phenylethyl)- α-mercapto- $\alpha-$ phenyl acetamide $((\alpha R)-5)$. Deacylation of $4(120 \mathrm{mg})$ was carried out with acetyl chloride (1 mL) in $\mathrm{MeOH}(3 \mathrm{~mL})$ at r.t. for 12 h to produce $(\alpha R)-5$ in 95% yield ($>99: 1 \mathrm{dr}$ determined by 'H NMR and H1'LC, compared with a sample of $(\alpha R S)-5){ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.36-7.22$ (m, $10 \mathrm{H}), 6.62(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~m}, \mathrm{IH}), 4.68(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, \mathrm{JH}), 2.57(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \mathrm{IH}), \mathrm{I} .48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 100 \mathrm{MHz}\right) 169.8$, 143.1, 139.4, 129.6. $129.3,129.0,128.6,127.9,126.4,49.9 .48 .4,22.2$.

Preparation of 2-((S)-1-phenylethylamino)-1-(S)-phenylethanethiol (6). To a solution of 4 in $[\mathrm{HF}(0.5 \mathrm{M})$ was added $\mathrm{BH}_{3}-\mathrm{THF}(1.0 \mathrm{M}, 5.0$ equiv), and the mixture was refluxed for 12 h . The reaction was quenched by adding $\mathrm{MeOH}(0.5 \mathrm{~mL})$ under ice-water cooling, and the solvents were evaporated. Aqueous $5 \%-\mathrm{HCl}(2 \mathrm{~mL})$ was added to the residue, and the mixture was refluxed for 1 hour. The reaction mixture was basified with $\mathrm{K}_{2} \mathrm{CO}_{3}$, saturated with NaCl , and extracted with $\mathrm{CHCl}_{3}(5 \mathrm{~mL} \times 3)$. The combined organic extracts were dried with anhydrous MgSO_{4}, filtered and concentrated to provide the crude product that was purified by column chromatography on silica gel. 58% yield;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.35-7.18(\mathrm{~m} .10 \mathrm{H}) .4 .03(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}) .3 .79(\mathrm{q}, J=6.6 \mathrm{~Hz} .1 \mathrm{H}) .2 .88(\mathrm{~m} .2 \mathrm{H}) .1 .80(\mathrm{br}$, $2 \mathrm{H}), 1.32(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ 145.7. 142.8, 129.1. 128.9, 127.9. 127.6, 127.4, 126.9. 58.4. 55.9. 44.6. 24.8.

Preparation of N-(S)-(1-phenylethyl)- α-(bromophenylacetylthio) $-\alpha-(R)$-phenyl acetamide (7). Acetamide 5 (1.0 equiv). racemic α-bromo phenylacetic acid (1.0 equiv). DCC (1.0 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (2.2 equiv) and DMAP (0.2 equiv) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred at room temperature for 3 h . The precipitate was filtered off and the organic phase was washed with water. The organic phase was dried over MgSO_{4}, filtered and concentrated to provide the crude product that was purified by column chromatography on silica gel in 75% yield; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.34$ $7.12(\mathrm{~m} .15 \mathrm{H}), 6.48,6.46(\mathrm{~d}, J=8.1 \mathrm{~Hz} .1 \mathrm{H}$. two peaks). $5.49(\mathrm{~s}, \mathrm{IH}) .5 .18 .5 .16(\mathrm{~s}, \mathrm{IH}$. two peaks). $5.03(\mathrm{~m}, \mathrm{IH})$. $1.41,1.37(\mathrm{~d} . J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ 194.2. 167.7. 143.0, 135.5. 135.1, 130.0. 129.4, 129.3. 129.2, 129.1. 129.0, 128.9, 127.8, 126.4, 54.4. 54.0, 49.9. 22.0.

Preparation of (R$)$-2- N, N-dibenzylamino-2-phenylethanol (8): To a solution of α-bromo thioester $7 \mathrm{in}_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}$ (ca. 0.1 M) were added DIEA (1.0 equiv), TBAI (1.0 equiv) and dibenzylamine (1.2 equiv). After the resulting reaction mixture was stirred at it for 20 h . the solvent was evaporated and the crude material was purified by column chromatography to give the product in 61% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$. 400 MHz . major diastereomer) $7.35-7.17$ (m. 25 H). 6.50 (d. $J=7.8 \mathrm{~Hz} . \mathrm{IH}) .5 .19(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~s} . \mathrm{IH})$. $1.51(\mathrm{~d}, J=6.9 \mathrm{~Hz} .3 \mathrm{H})$. After the addition of $\mathrm{LiAlH}_{4}(1.5$ equiv) to the substitution in THF the mixture was stirred at it for 3 h and then quenched with EtOAc and $0.1 \mathrm{M}-\mathrm{HCl}$ solution. Extractive workup and colunn chromatography gave (R)-8 in 55% y ield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.44$ $7.25(\mathrm{~m}, 15 \mathrm{H}), 4.14(\mathrm{dd} . J=10.6 .10 .6 \mathrm{~Hz}, \mathrm{IH}), 3.96-3.90$ $(\mathrm{m}, 3 \mathrm{H}), 3.62(\mathrm{~m}, \mathrm{IH}), 3.15(\mathrm{~d}, J=13.4 \mathrm{~Hz} .1 \mathrm{H}) .3 .01(\mathrm{br}$. 1 H). The enantiomeric ratio of 8 was determined to be $84: 16$ in favor of the R enantiomer by CSP-HPLC using racemic material as a standard. (Chiralcel OD columu: 10% 2-propanol in hexane: $0.5 \mathrm{~mL} / \mathrm{min})$: $12.7 \mathrm{~min}(R) .19 .4 \mathrm{~min}(S)$.
Preparation of ethyl (R)-2-[(4-oxo-2-phenyl-4H-chro-mem-6-yl)amino]phenyl acetate (9). To a solution of α bromo thioester $7 \mathrm{in} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 0.1 M) were added DIEA (1.0 equiv), TBAI (1.0 equiv) and 6 -aminoflavone (1.2 equiv). After the resulting reaction mixture was stirred at rt for 20 h . the solvent was evaporated and the crude material was purified by column chromatography to give the product in 70\% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3 .} .400 \mathrm{MHz}\right.$, major diastereomer) 7.85 (m. $2 \mathrm{H}), 7.51-6.99(\mathrm{~m}, 21 \mathrm{H}), 6.71(\mathrm{~s} .1 \mathrm{H}) .6 .39(\mathrm{~d} . J=7.8 \mathrm{~Hz}$. $1 \mathrm{H}) .5 .24$ (d. $J=5.3 \mathrm{~Hz} .1 \mathrm{H}) .5 .01$ (m. 1H). 5.16 (s. 1 H). $5.03(\mathrm{~m}, 1 \mathrm{H}) .4 .94(\mathrm{~d} . J=5.3 \mathrm{~Hz}, 1 \mathrm{H}) .1 .32(\mathrm{~d} . J=6.9 \mathrm{~Hz}$. $3 \mathrm{H})$. The mixture of the substituted product and $\mathrm{Bu}_{3} \mathrm{P}(0.1$ equiv) in ethanol was stirred for 24 h . The solvent was evaporated and purified by column chromatography to give 9 in 66% y ield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{5} .400 \mathrm{MHz}\right) 7.86(\mathrm{~m} .2 \mathrm{H})$.
$7.53-7.22(\mathrm{~m} .10 \mathrm{H}) .7 .00(\mathrm{~m} . \mathrm{lH}) .6 .72(\mathrm{~s} .1 \mathrm{H}) .5 .23(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, \mathrm{IH}), 5.19(\mathrm{~d} . J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 2 \mathrm{H}) .1 .24(\mathrm{t}, J$ $=9.6 \mathrm{~Hz} .3 \mathrm{H}){ }^{8 d}$ The enantioneric ratio of 9 was determined to be $80: 20$ in favor of the R enantiomer by CSP-HPLC using racemic material as a standard. (Chiralcel OD column; 5% 2-propanol in hexane: $0.5 \mathrm{~mL} / \mathrm{min}$): $101 \mathrm{~min}(R), 94 \mathrm{~min}$ (S).

Acknowledgements. This work was supported by a grant from Korea Research Foundation (KRF-2006-005-J03402).

References and Notes

1. For revieus on dynamic kinetic resolution, see: (a) Treweeke. N R.; Hitchcock. P. B.; Pardoe, D. A.: Caddick, S. Chem. Commmo 2005. 1868. (b) Kim, H. J.; Kim, Y.: Choi. E. T.: Lee, M. H.: No. E. S.: Park, Y. S. Tetrahedron 2006. 62. 6303. (c) Chang. J.-y. Shint. E.-k.: Kim. H. J.: Kim. Y.: Park. Y. S. Tetrahedron 2005.61. 2743. (d) Nam. J.: Chang. J.-y.: Shin. E.-k.: Kim. H. T.: Kim. Y:: Jang. S.: Park. Y. S. Terrahedron 20(h). 60. 6311. (e) Caddick. S.: Afonso. C. A. M.: Candeias, S. X.; Hitchcock, P. B.: Jenkins, K; Murtagh. L.; Pardoe. D.; Santos. A. G.; Treweeke, N. R; Weaving, R. Tebahedron 2001. 57.6589. (t) Ben, R. N.: Durst, T. J. Org. Chent. 1999. 6t. 7700 .
2. For reviews on dynamic thermodynamic resolutionn see: (a) Nam. J.: Lee. S.-k.: Park. Y. S. Tetrohedron 2003. 59.2397 . (b) Lee. S.k; Nam, J.; Park. Y. S. Syhlett 2002. 790. (c) Nam, J.; Lee, S.-k; Kim. K. Y., Park. Y. S. Tetrahedron Lett. 2002. +2, 8253. (d) Kim. Y.: Kang, K. H.; Choi, E. T.: Lee, M. H.; Park. Y. S. Bull. Konean Chen. Soc. 2007. 28. 325.
3. For reviews on erystallization induced dynamic resolution. see (a) Lee. S.k.: Lee. S. Y.: Park. Y. S. Smint 2001. 1941. (b) Caddick, S.; Jenkins. K. Tetrahedron Lett. 1996. 37. 1301. (c) Kiau. S.; Discordia. R. P.: Madding. G.: Oluniewicz. F. J.; Rosso. V.: Venit. J. J. J. Org Chem. 2004. 69, 4256
4. (a) Candela-Lena. J. I.: Davies. S. G.: Roberts. P. M.: Rouns. B.: Russell. A. T.: Sánchez-Fernández. E. M.: Smith. A. D. Tetrahedront: Asymmetry 2006. 17. 1135. (b) France. S.: Bernstein. D.: Weatherwax, A.: Leetka, T. Org. Lett 2005, 7. 3009. (c) Schedel. H.; Quaedflieg, P. J. L. M.: Broxtermann. Q. B.; Bisson, W:; Duchateau, A. L. L.; Maes, I. C. H.: Herzschuh, R.: Burger. K. Terrahedron: Aspmmenv 2000. H. 2125. (d) Harding. R. L: Bugg. T. D. H. Tetrahedron Letl. 2000. 4. 2729.
5. The asymmetric reduction of acetophenone with LiAlH_{4} in the presence of chiral ligand 6 provided l-phenylethanol with 65:35 er. Cupublished results.
6. The absolute configurations of $(R)-8$ and $(R)-9$ were assigned by comparison of the CSP-HPLC retention time to those of the authentic material reported previously ${ }^{3 / 4}$
7. (a) Babu. K. S.: Babu. T. H.: Srinivas. P. V:: Kishore. K. H.: Murthy, U. S. N.: Rao. J. M. Bioorg. Afed. Chem. Lett. $2006,16$. 221. (b) Gao, G.-Y.: Li, D.-J.; Keung, W. M. J. Med. Chem. 2001. 44. 3320. (c) MBaye, G: Martyloga, O. V: Duportail. G:; Pivovarenko. V. G. J. Photochem. Photobiol. A 2006. 184. 113. (d) Malolanarasimhan. K.: Lai. C. C.: Kelly. T. A.: Iaccarino. L.: Reynolds. D.: Young. H. A.: Marquez. V. E. Bioorg. Med Chen. 2005. 13, 2717.
8. (a) Lee. E.-R.; Kang, Y.-J: Choi, H.-Y; Kang, G.-H.: Kim. J.-H:; Kim. B.-W.; Han. Y. S.; Nah. S.-Y.: Paik. H.-D.; Park. Y. S.; Cho. S.-G. Biol. Phamm. Bill. 2007. 30. 2394. (b) Kim. K.-T.: Moon. S.H.: Yeo. E.-J.: Park. Y. S.: Han1. Y.-S.: Na. S.-Y.: Lee. N. G.: Paik. H.-D. Food Sci. Biotechmol. 2006. 15. 466. (c) Kang. K. H.: Heo. J. H.; Kim. Y.; Park. Y. S. Heterocycles 2007. 71. 1163. (d) Kang. K. H.: Lee, M. H.; Choi, E. T.: Park Y. S. Bull. Korean Chem. Soc. 2007. 28, 1199.
