DOI QR코드

DOI QR Code

Self-Assembly and Photopolymerization of Diacetylene Molecules on Surface of Magnetite Nanoparticles

  • Vinod, T.P. (Department of Chemistry, College of Natural Sciences, Kongju National University) ;
  • Chang, Ji-Hoon (Department of Nano and Electronic Physics, College of Natural Sciences, Kookmin University) ;
  • Kim, Jin-Kwon (Department of Chemistry, College of Natural Sciences, Kongju National University) ;
  • Rhee, Seog-Woo (Department of Chemistry, College of Natural Sciences, Kongju National University)
  • Published : 2008.04.20

Abstract

An amphiphilic diacetylene compound was deposited on the surface of nano sized magnetite particles ($Fe_3O_4$) using a self-assembly method. The diacetylene molecular assembly formed on the surface of nanoparticle was subjected to photopolymerization. This resulted in the formation of a polymeric assembly on the surface of the nanoparticles in which the adjacent diacetylene molecules were connected through conjugated covalent networks. The presence of immobilized polymer species on the surface of nanoparticles is expected to protect them from agglomeration and ripening, thereby stabilizing their physical properties. In this work, $Fe_3O_4$ nanoparticles were prepared by chemical coprecipitation method and the diacetylene molecule 10,12- pentacosadiynoic acid (PCDA) was anchored to the surface of $Fe_3O_4$ nanoparticles through its carboxylate head group. Irradiation of UV light on the nanoparticles containing immobilized diacetylenes resulted in the formation of a polymeric assembly. Presence of diacetylene molecules on the surface of nanoparticles was confirmed by X-ray photoelectron spectroscopy and FT-IR measurements. Photopolymerization of the diacetylene assembly was detected by UV-Visible spectroscopy. Magnetic properties of the nanoparticles coated with polymeric assembly were investigated with SQUID and magnetic hysteresis showed superparamagnetic behaviors. The results put forward a simple and effective method for achieving polymer coating on the surface of magnetic nanoparticle.

Keywords

References

  1. Gupta, A. K.; Curtis, A. S. G. J. Mater. Sci.: Mater. Med. 2004, 15, 493 https://doi.org/10.1023/B:JMSM.0000021126.32934.20
  2. Hergt, R.; Hiergeist, R.; Hilger, I.; Kaiser, W. A.; Lapatnikov, Y.; Margel, S.; Richter, U. J. Magn. Magn. Mater. 2004, 270, 345 https://doi.org/10.1016/j.jmmm.2003.09.001
  3. Johannsen, M.; Jordan, A.; Scholz, R.; Koch, M.; Lein, M.; Deger, S.; Roigas, J.; Jung, K.; Loening, S. A. J. Endourol. 2004, 18, 495 https://doi.org/10.1089/0892779041271715
  4. Kodama, R. H. J. Magn. Magn. Mater. 1999, 200, 359 https://doi.org/10.1016/S0304-8853(99)00347-9
  5. Li, G. X.; Joshi, V.; White, R. L.; Wang, S. X.; Kemp, J. T.; Webb, C.; Davis, R. W.; Sun, S. H. J. Appl. Phys. 2003, 93, 7557 https://doi.org/10.1063/1.1540176
  6. Shen, H. B.; Wang, Y. B.; Yang, H. F.; Jiang, J. S. Chin. Sci. Bull. 2003, 48, 2698 https://doi.org/10.1007/BF02901759
  7. Zeng, H.; Li, J.; Wang, Z. L.; Liu, J. P.; Sun, S. H. Nano Lett. 2004, 4, 187 https://doi.org/10.1021/nl035004r
  8. Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Science 2001, 291, 2115 https://doi.org/10.1126/science.1057553
  9. Noguchi, H.; Yanase, N.; Uchida, Y.; Suzuta, T. J. Appl. Polym. Sci. 1993, 48, 1539 https://doi.org/10.1002/app.1993.070480905
  10. Sunderland, K.; Brunneti, P.; Spinu, L.; Fang, J.; Wang, Z.; Lu, W. Mater. Lett. 2004, 58, 3136 https://doi.org/10.1016/j.matlet.2004.05.055
  11. Sun, H.; Hong, J.; Meng, F.; Gong, P.; Yu, J.; Xue, Y.; Zhao, S.; Xu, D.; Dong, L.; Yao, S. Surf. Coatings Technol. 2006, 201, 250 https://doi.org/10.1016/j.surfcoat.2005.11.112
  12. Wegner, G. Z. Naturforsch. 1969, 24B, 824
  13. Itoh, C.; Kondoh, T.; Tanimura, K. Chem. Phys. Lett. 1996, 261, 191 https://doi.org/10.1016/0009-2614(96)00948-7
  14. Kuriyama, K.; Kikuchi, H.; Kajiyama, T. Langmuir 1998, 14, 1130 https://doi.org/10.1021/la970831r
  15. Mowery, M. D.; Menzel, H.; Cai, M.; Evans, C. E. Langmuir 1998, 14, 5594 https://doi.org/10.1021/la980331d
  16. Okada, S.; Peng, S.; Spevak, W.; Charych, D. Acc. Chem. Res. 1998, 31, 229 https://doi.org/10.1021/ar970063v
  17. Donovan, K. J.; Wilson, E. G. Synth. Met. 1989, 28, D569 https://doi.org/10.1016/0379-6779(89)90746-7
  18. Massart, R. IEEE Trans. Magn. 1981, 17, 1247 https://doi.org/10.1109/TMAG.1981.1061188
  19. Gass, J.; Poddar, P.; Almand, J.; Srinath, S.; Srikanth, H. Adv. Funct. Mater. 2006, 16, 71 https://doi.org/10.1002/adfm.200500335
  20. Kim, D. K.; Zhang, Y.; Voit, W.; Rao, K. V.; Muhammed, M. J. Magn. Magn. Mater. 2001, 225, 30 https://doi.org/10.1016/S0304-8853(00)01224-5
  21. Liu, Q.; Xu, Z. Langmuir 1995, 11, 4617 https://doi.org/10.1021/la00012a005
  22. Zhang, L.; He, R.; Gu, H.-C. Appl. Surf. Sci. 2006, 253, 2611 https://doi.org/10.1016/j.apsusc.2006.05.023
  23. McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. 2000, 100, 2537 https://doi.org/10.1021/cr9801014
  24. Okada, S. Y.; Jelinek, R.; Charych, D. Angew. Chem. Int. Ed. 1999, 38, 655 https://doi.org/10.1002/(SICI)1521-3773(19990301)38:5<655::AID-ANIE655>3.0.CO;2-4
  25. Lee, J.; Isobe, T.; Senna, M. Colloids Surf., A:Physicochem. Eng. Asp. 1996, 109, 121 https://doi.org/10.1016/0927-7757(95)03479-X

Cited by

  1. Interaction of Acylated and Substituted Antimicrobial Peptide Analogs with Phospholipid-Polydiacetylene Vesicles. Correlation with their Biological Properties vol.78, pp.1, 2011, https://doi.org/10.1111/j.1747-0285.2011.01099.x
  2. Magnetically Responsive Inorganic/Polydiacetylene Nanohybrids vol.213, pp.9, 2012, https://doi.org/10.1002/macp.201200049
  3. Structure of isophthalic acid based monolayers and its relation to the initial stages of growth of metal–organic coordination layers vol.3, pp.6, 2012, https://doi.org/10.1039/c2sc20087b
  4. Synthesis, characterization and catalytic activity of furosemide-functionalized ferrite on the sedimentation behavior of starch vol.5, pp.1, 2015, https://doi.org/10.1007/s13204-014-0294-5
  5. A polymerizable supramolecular approach for the fabrication of patterned magnetic nanoparticles vol.51, pp.53, 2015, https://doi.org/10.1039/C5CC02873F
  6. Synthesis, characterization, and cytotoxicity evaluation of high-magnetization multifunctional nanoclusters vol.19, pp.1, 2017, https://doi.org/10.1007/s11051-016-3685-6
  7. Influence of plasma treatment on the adhesion between a polymeric matrix and natural fibres vol.24, pp.4, 2017, https://doi.org/10.1007/s10570-017-1209-x
  8. Ionization photophysics and Rydberg spectroscopy of diacetylene vol.110, pp.21-22, 2012, https://doi.org/10.1080/00268976.2012.704084
  9. Synthesis of a pH-Sensitive PEO-Based Block Copolymer and its Application for the Stabilization of Iron Oxide Nanoparticles vol.211, pp.10, 2010, https://doi.org/10.1002/macp.200900528
  10. Synthesis and Magnetic Properties of Dendron Capped Fe2O3 Nanoparticles vol.29, pp.8, 2008, https://doi.org/10.5012/bkcs.2008.29.8.1545
  11. Phase Change Ultrasound Contrast Agents with a Photopolymerized Diacetylene Shell vol.35, pp.31, 2008, https://doi.org/10.1021/acs.langmuir.9b01160
  12. Silica covered stannic oxide nanoparticles-an easily prepared robust substrate for optical sensors vol.33, pp.10, 2008, https://doi.org/10.1088/1361-6528/ac3ce3