DOI QR코드

DOI QR Code

Nanoscale Characterization of Escherichia coli Biofilm Formed under Laminar Flow Using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM)

  • Lim, Jee-Sun (Department of Chemistry and Nano Sciences (BK21), Ewha Womans University) ;
  • Lee, Kang-Mu (Department of Chemistry and Nano Sciences (BK21), Ewha Womans University) ;
  • Kim, So-Hyun (Department of Chemistry and Nano Sciences (BK21), Ewha Womans University) ;
  • Nam, Seong-Won (Department of Chemistry and Nano Sciences (BK21), Ewha Womans University) ;
  • Oh, Yoo-Jin (Department of Physics, Ewha Womans University,) ;
  • Yun, Hyun-Sun (Division of Food Science and Technology, Korea University) ;
  • Jo, William (Department of Physics, Ewha Womans University) ;
  • Oh, Se-Jong (Department of Animal Science, Chonnam National University) ;
  • Kim, Sae-Hun (Division of Food Science and Technology, Korea University,) ;
  • Park, Sungsu (Department of Chemistry and Nano Sciences (BK21), Ewha Womans University)
  • Published : 2008.11.20

Abstract

Keywords

References

  1. Costerton, J. W.; Stewart, P. S.; Greenberg, E. P. Science 1999, 284, 1318 https://doi.org/10.1126/science.284.5418.1318
  2. O'Toole, G.; Kaplan, H. B.; Kolter, R. Annu. Rev. Microbiol. 2000, 54, 49 https://doi.org/10.1146/annurev.micro.54.1.49
  3. Potera, C. Science 1999, 283, 1837 https://doi.org/10.1126/science.283.5409.1837
  4. Stewart, P. S.; Costerton, J. W. Lancet 2001, 358, 135 https://doi.org/10.1016/S0140-6736(01)05321-1
  5. Simões, M.; Pereira, M. O.; Sillankorva, S.; Azeredo, J.; Vieira, M. J. Biofouling 2007, 23, 249 https://doi.org/10.1080/08927010701368476
  6. Simoes, M.; Pereira, M. O.; Vieira, M. J. Water. Sci. Technol. 2003, 47, 217
  7. Rani, S. A.; Pitts B.; Stewart, P. S. Antimicrob. Agents Chemother. 2005, 49, 728 https://doi.org/10.1128/AAC.49.2.728-732.2005
  8. Kuehn, M.; Hausner, M.; Bungartz, H. J.; Wagner, M.; Wilderer, P. A.; Wuertz, S. Appl. Environ. Microbiol. 1998, 64, 4115
  9. Oh, Y. J.; Jo, W.; Yang, Y.; Park, S. Appl. Phys. Lett. 2007, 90, 143901 https://doi.org/10.1063/1.2719030
  10. Cross, S. E.; Kreth, J.; Zhu, L.; Qi, F.; Pelling, A. E.; Shi, W.; Gimzewski, J. K. Nanotechnology 2006, 17, S1 https://doi.org/10.1088/0957-4484/17/1/001
  11. Erlandsen, S. L.; Kristich, C. J.; Dunny, G. M.; Wells, C. L. J. Histochem. Cytochem. 2004, 52, 1427 https://doi.org/10.1369/jhc.4A6428.2004
  12. Nam, S. W.; Van Noort, D.; Yang, S.; Kim, S. H.; Park, S. Biochip J. 2007, 1, 111
  13. Kou, S.; Lee, H. N.; van Noort, D.; Swamy, K. M. K.; Kim, S. H.; Soh, J. H.; Nam, S. W.; Yoon, J.; Park, S. Angew. Chem. Int. Ed. 2008, 47, 872 https://doi.org/10.1002/anie.200703813
  14. Lee, N. Y.; Yang, Y.; Kim Y. S.; Park, S. Bull. Korean Chem. Soc. 2006, 27, 479 https://doi.org/10.5012/bkcs.2006.27.4.479
  15. Buchanan, R. L.; Doyle, M. P. Food Technol. 1997, 51, 69
  16. Kim, Y. H.; Lee, Y.; Kim, S.; Yeom, J.; Yeom, S.; Kim, B. S.; Oh, S.; Park, S.; Jeon, C. O.; Park, W. Proteomics 2006, 6, 6181 https://doi.org/10.1002/pmic.200600320
  17. Park, S.; Wolanin, P. M.; Yuzbashyan, A. E.; Lin, H.; Darnton, N. C.; Stock, J. B.; Silberzan, P.; Austin, R. Proc. Natl. Acad. Sci. USA 2003, 100, 13910 https://doi.org/10.1073/pnas.1935975100
  18. Sato, K.; Tokeshi, M.; Kimura, H.; Kitamori, T. Anal. Chem. 2001, 73, 1213 https://doi.org/10.1021/ac000991z
  19. Cormack, B. P.; Valdivia, R. H.; Falkow, S. Gene 1996, 173, 33 https://doi.org/10.1016/0378-1119(95)00685-0
  20. Hassan, A. N.; Frank, J. F. Int. J. Food Microbiol. 2004, 96, 103 https://doi.org/10.1016/S0168-1605(03)00160-0
  21. Oh, Y. J.; Jo, W.; Yang, Y.; Park, S. Ultramicroscopy 2007, 107, 869 https://doi.org/10.1016/j.ultramic.2007.01.021
  22. Stoodley, P.; Dodds, I.; De Beer, D.; Scott, H. L.; Boyle, J. D. Biofouling 2005, 21, 161 https://doi.org/10.1080/08927010500375524
  23. Pereira, M. O.; Kuehn, M.; Wuertz, S.; Neu, T.; Melo, L. F. Biotechnol. Bioeng. 2002, 78, 164 https://doi.org/10.1002/bit.10189
  24. Stewart, P. S. J. Bacteriol. 2003, 185, 1485 https://doi.org/10.1128/JB.185.5.1485-1491.2003
  25. Kuchma, S. L.; O'Toole, G. A. Curr. Opin. Biotechnol. 2000, 11, 429 https://doi.org/10.1016/S0958-1669(00)00123-3
  26. Ahimou, F.; Semmens, M. G.; Haugstad, G.; Novak, P. J. Appl. Environ. Microbiol. 2007, 73, 2905 https://doi.org/10.1128/AEM.02420-06

Cited by

  1. A review of microbial biofilms of produce: Future challenge to food safety vol.21, pp.2, 2012, https://doi.org/10.1007/s10068-012-0041-1
  2. Initial phases of microbial biofilm formation on opaque, innovative anti-adhesive surfaces using a modular microfluidic system vol.14, pp.1, 2013, https://doi.org/10.1002/elsc.201200035
  3. Evaluation of antibiotic effects on Pseudomonas aeruginosa biofilm using Raman spectroscopy and multivariate analysis vol.5, pp.9, 2014, https://doi.org/10.1364/BOE.5.003238
  4. Inhibitory effects of green tea polyphenol epigallocatechin gallate (EGCG) on exopolysaccharide production by Streptococcus mutans under microfluidic conditions vol.8, pp.3, 2014, https://doi.org/10.1007/s13206-014-8304-y
  5. AFM structural characterization of drinking water biofilm under physiological conditions vol.6, pp.7, 2016, https://doi.org/10.1039/C5RA20606E
  6. biofilms investigated by using magnetic force modulation atomic force microscopy vol.11, pp.4, 2016, https://doi.org/10.1116/1.4968809
  7. Environmental factors that affect Streptococcus mutans biofilm formation in a microfluidic device mimicking teeth vol.4, pp.4, 2010, https://doi.org/10.1007/s13206-010-4401-8
  8. Characterisation of spin coated engineered Escherichia coli biofilms using atomic force microscopy vol.89, pp.None, 2008, https://doi.org/10.1016/j.colsurfb.2011.09.007