DOI QR코드

DOI QR Code

Structural Basis of Functional Conversion of a Floral Repressor to an Activator: A Molecular Dynamics Simulation Study

  • Kang, Suk-Ki (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Lee, Ju-Yong (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Lee, Myeong-Sup (Department of Biochemistry and Genome Regulation Center, Yonsei University) ;
  • Seok, Cha-Ok (Department of Chemistry, College of Natural Sciences, Seoul National University)
  • Published : 2008.02.20

Abstract

FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1) in Arabidopsis are homologous proteins that perform opposite functions: FT is an activator of flowering, and TFL1 is a repressor. It was shown before that change of a single amino acid (His88) of TFL1 to the corresponding amino acid (Tyr) of FT is enough to convert the floral repressor to an activator. However, structural basis of the functional conversion has not been understood. In our molecular dynamics simulations on modified TFL1 proteins, a hydrogen bond present in native TFL1 between the His88 residue and a residue (Asp144) in a neighboring external loop became broken by change of His88 to Tyr. This breakage induced conformational change of the external loop whose structure was previously reported to be another key functional determinant. These findings reveal that the two important factors determining the functional specificities of the floral regulators, the key amino acid (His88) and the external loop, are correlated, and the key amino acid determines the functional specificity indirectly by affecting the conformation of the external loop.

Keywords

References

  1. Kobayashi, Y.; Kaya, H.; Goto, K.; Iwabuchi, M.; Araki, T. Science 1999, 286, 1960 https://doi.org/10.1126/science.286.5446.1960
  2. Kardailsky, I.; Shukla, V. K.; Ahn, J. H.; Dagenais, N.; Christensen, S. K.; Nguyen, J. T.; Chory, J.; Harrison, M. J.; Weigel, D. Science 1999, 286, 1962 https://doi.org/10.1126/science.286.5446.1962
  3. Bradley, D.; Ratcliffe, O.; Vincent, C.; Carpenter, R.; Coen, E. Science 1997, 275, 80 https://doi.org/10.1126/science.275.5296.80
  4. Schoentgen, F.; Saccoccio, F.; Jolles, J.; Bernier, I.; Jolles, P. Eur. J. Biochem. 1987, 166, 333 https://doi.org/10.1111/j.1432-1033.1987.tb13519.x
  5. Ahn, J. H.; Miller, D.; Winter, V. J.; Banfield, M. J.; Lee, J. H.; Yoo, S. Y.; Henz, S. R.; Brady, R. L.; Weigel, D. EMBO J. 2006, 25, 605 https://doi.org/10.1038/sj.emboj.7600950
  6. Hanzawa, Y.; Money, T.; Bradley, D. Proc. Nat. Acad. Sci. U.S.A. 2005, 102, 7748
  7. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235 https://doi.org/10.1093/nar/28.1.235
  8. Case, D. A.; Cheatham Iii, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz Jr, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26, 1668 https://doi.org/10.1002/jcc.20290
  9. Wang, J.; Cieplak, P.; Kollman, P. A. J. Comput. Chem. 2000, 21, 1049 https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
  10. Tsui, V.; Case, D. A. Biopolymers (Nucleic Acid Sciences) 2001, 56, 257
  11. Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. 1996, 100, 19824 https://doi.org/10.1021/jp961710n
  12. Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. Chem. Phys. Lett. 1995, 246, 122 https://doi.org/10.1016/0009-2614(95)01082-K
  13. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327 https://doi.org/10.1016/0021-9991(77)90098-5
  14. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684 https://doi.org/10.1063/1.448118
  15. Coutsias, E. A.; Seok, C.; Dill, K. A. J. Comput. Chem. 2004, 25, 1849 https://doi.org/10.1002/jcc.20110
  16. Coutsias, E. A.; Seok, C.; Dill, K. J. Comput. Chem. 2005, 26, 1663 https://doi.org/10.1002/jcc.20316

Cited by

  1. Day length dependent restructuring of the leaf transcriptome and metabolome in potato genotypes with contrasting tuberization phenotypes vol.37, pp.6, 2013, https://doi.org/10.1111/pce.12238
  2. Analysis of two TFL1 homologs of dogwood species (Cornus L.) indicates functional conservation in control of transition to flowering vol.243, pp.5, 2016, https://doi.org/10.1007/s00425-016-2466-x
  3. Functional divergence and intron variability during evolution of angiosperm TERMINAL FLOWER1 ( TFL1 ) genes vol.7, pp.None, 2008, https://doi.org/10.1038/s41598-017-13645-0