DOI QR코드

DOI QR Code

CuO Nanotubes Synthesized by the Thermal Oxidation of Cu Nanowires

  • Cho, Young-Sik (Department of Chemistry, Center for Photofunctional Energy Materials, Dankook University) ;
  • Huh, Young-Duk (Department of Chemistry, Center for Photofunctional Energy Materials, Dankook University)
  • Published : 2008.12.20

Abstract

Keywords

References

  1. Anandan, S.; Wen, X.; Yang, S. Mater. Chem. Phys. 2005, 93, 35. https://doi.org/10.1016/j.matchemphys.2005.02.002
  2. Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Chem. Mater. 2006, 18, 867. https://doi.org/10.1021/cm052256f
  3. Reitz, J. B.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 11467. https://doi.org/10.1021/ja981579s
  4. Liu, Z.; Bando, Y. Adv. Mater. 2003, 15, 303. https://doi.org/10.1002/adma.200390073
  5. Song, X.; Yu, H.; Sun, S. J. Colloid Interface Sci. 2005, 289, 588. https://doi.org/10.1016/j.jcis.2005.03.074
  6. Hou, H.; Xie, Y.; Li, Q. Cryst. Growth Des. 2005, 5, 201. https://doi.org/10.1021/cg049972z
  7. Li, D.; Leung, Y. H.; Djurisic, A. B.; Liu, Z. T.; Xie, M. H.; Gao, J.; Chan, W. K. J. Cryst. Growth 2005, 282, 105. https://doi.org/10.1016/j.jcrysgro.2005.04.090
  8. Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2004, 126, 8124. https://doi.org/10.1021/ja048195o
  9. Huh, Y. D.; Kweon, S. S. Bull. Kor. Chem. Soc. 2005, 26, 2054. https://doi.org/10.5012/bkcs.2005.26.12.2054
  10. Song, H. C.; Park, S. H.; Huh, Y. D. Bull. Kor. Chem. Soc. 2007, 28, 477. https://doi.org/10.5012/bkcs.2007.28.3.477
  11. Shen, X. P.; Liu, H. J.; Pan, L.; Chen, K. M.; Hong, J. M.; Xu, Z. Chem. Lett. 2004, 33, 1128. https://doi.org/10.1246/cl.2004.1128
  12. Cao, M.; Hu, C.; Wang, Y.; Guo, Y.; Guo, C.; Wang, E. Chem. Commun. 2003, 1884.
  13. Chen, J. T.; Zhang, F.; Wang, J.; Zhang, G. A.; Miao, B. B.; Fan, X. Y.; Yan, D.; Yan, P. X. J. Alloy Compd. 2008, 454, 268. https://doi.org/10.1016/j.jallcom.2006.12.032
  14. Xu, C. H.; Woo, C. H.; Shi, S. Q. Chem. Phys. Lett. 2004, 399, 62. https://doi.org/10.1016/j.cplett.2004.10.005
  15. Zhang, W.; Ding, S.; Yang, Z.; Liu, A.; Qian, Y.; Tang, S.; Yang, S. J. Cryst. Growth 2006, 291, 479. https://doi.org/10.1016/j.jcrysgro.2006.03.015
  16. Kaur, M.; Muthe, K. P.; Despande, S. K.; Choudhury, S.; Singh, J. B.; Verma, N.; Gupta, S. K.; Yakhmi, J. V. J. Cryst. Growth 2006, 289, 670. https://doi.org/10.1016/j.jcrysgro.2005.11.111
  17. Cho, Y. S.; Huh, Y. D. Mater. Lett. 2009, 63, 227. https://doi.org/10.1016/j.matlet.2008.09.049
  18. Asbrink, S.; Norby, L. J. Acta Cryst. 1970, B26, 8.
  19. Yin, Y.; Erdonmez, C. K.; Cabot, A.; Hughes, S.; Alivisatos, A. P. Adv. Funct. Mater. 2006, 16, 1389. https://doi.org/10.1002/adfm.200600256

Cited by

  1. CuO Nanoparticles as an Efficient and Reusable Catalyst for the One-pot Friedlander Quinoline Synthesis vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3853
  2. Morphology control of CuO micro-particles using Zn2+ ion and ultrasonic treatment pp.02321300, 2011, https://doi.org/10.1002/crat.201000606
  3. O and Cu vol.47, pp.10, 2012, https://doi.org/10.1002/crat.201200189
  4. Preparation of cupric oxide by isothermal oxidation of metallic copper powder produced by electroless deposition vol.55, pp.6, 2014, https://doi.org/10.3103/S1067821214060078
  5. Prepared of Flower-Like CuO via CTAB-Assisted Hydrothermal Method vol.152-153, pp.1662-8985, 2010, https://doi.org/10.4028/www.scientific.net/AMR.152-153.909
  6. Synthesis and Characterization of CuO Nanorods by Hydrothermal Method vol.785-786, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.785-786.417
  7. Synthesis of freestanding cupric oxide nanotubes with close ends from copper nanowires by the Kirkendall effect vol.34, pp.5, 2016, https://doi.org/10.1116/1.4959788
  8. O Crystals pp.12295949, 2018, https://doi.org/10.1002/bkcs.11596
  9. Template-Free Synthesis of Mesoporous CuO Dandelion Structures For Optoelectronic Applications vol.2, pp.5, 2008, https://doi.org/10.1021/am100197w
  10. Preparation of Uniform Hexapod Cu2O and Hollow Hexapod CuO vol.34, pp.10, 2008, https://doi.org/10.5012/bkcs.2013.34.10.3101
  11. Cu2O polyhedral nanowires produced by microwave irradiation vol.2, pp.30, 2008, https://doi.org/10.1039/c4tc00747f
  12. Synthesis of Graphite Oxide-Wrapped CuO Nanocomposites for Electrocatalytic Oxidation of Glucose vol.44, pp.10, 2008, https://doi.org/10.1080/15533174.2013.791840
  13. Highly Active Core–Shell Carbon/NiCo2O4 Double Microtubes for Efficient Oxygen Evolution Reaction: Ultralow Overpotential and Superior Cycling Stability vol.15, pp.42, 2008, https://doi.org/10.1002/smll.201903297
  14. Effects of Components on the Photoelectric Properties of CuxO Nanotubes Fabricated by Using Thermal Oxidation of Copper Nanowires vol.76, pp.2, 2008, https://doi.org/10.3938/jkps.76.132
  15. Boosting hydrogen evolution electrocatalysis through defect engineering: A strategy of heat and cool shock vol.426, pp.None, 2008, https://doi.org/10.1016/j.cej.2021.131524