DOI QR코드

DOI QR Code

Structural and Magnetic Properties of Monomeric and Dimeric Copper(II) Complexes with Phenyl-N-[(pyridine-2-yl)methylene]methaneamide

  • Lee, Hong-Woo (Department of Chemistry, Pusan National University) ;
  • Sengottuvelan, Nallathambi (Department of Chemistry Education and Center for Plastic Information System, Pusan National University) ;
  • Seo, Hoe-Joo (Department of Chemistry, Pusan National University) ;
  • Choi, Jae-Soo (Department of Chemistry, Chungnam National University) ;
  • Kang, Sung-Kwon (Department of Chemistry, Chungnam National University) ;
  • Kim, Young-Inn (Department of Chemistry Education and Center for Plastic Information System, Pusan National University)
  • Published : 2008.09.30

Abstract

The reaction of copper(II) chloride with phenyl-N-[(pyridine-2-yl)methylene]methaneamide (ppmma) leads to a new $\mu$ -chloro bridged dimeric [Cu(ppmma)$Cl_2$]$_2$ complex, whereas a reaction of copper(II) bromide with ppmma affords a monomeric Cu(ppmma)$Br_2$ complex. Both complexes have been characterized by X-ray crystallography and electronic absorption spectroscopy. The crystal structural analysis of [Cu(ppmma)$Cl_2$]$_2$ shows that the two Cu(II) atoms are bridged by two chloride ligands, forming a dimeric copper(II) complex and the copper ion has a distorted square-pyramidal geometry ($\tau$ = 0.2). The dimer units are held through a strong intermolecular $\pi-\pi$ interactions between the nearest benzyl rings. On the other hand, Cu(ppmma)Br2 displayed a distorted square planar geometry with two types of strong intermolecular π-π interaction. EPR spectrum of [Cu(ppmma)$Cl_2$]$_2$ in frozen glas s at 77 K revealed an equilibrium between the mononuclear and binuclear species. The magnetic susceptibilities data of [Cu(ppmma)$Cl_2$]$_2$ and Cu(ppmma)$Br_2$ follow the Curie-Weiss law. No significant intermolecular magnetic interactions were examined in both complexes, and magnetic exchange interactions are discussed on the basis of the structural features.

Keywords

References

  1. Rodriguez-Fortea, A.; Alemany, P.; Alvarez, S.; Ruiz, E. Inorg. Chem. 2004, 41, 3769 https://doi.org/10.1021/ic011308+
  2. Rodriguez, M.; Llobet, A.; Corbella, M.; Martell, A. E.; Reibenspies, J. Inorg. Chem. 1999, 38, 2328 https://doi.org/10.1021/ic9808504
  3. Alves, W. A.; Almeida Santos, R. H.; Paduan-Filho, A.; Becerra, C. C.; Borin, A. C.; Costa Ferreira, A. M. Inorg. Chim. Acta 2004, 357, 2269 https://doi.org/10.1016/j.ica.2004.01.004
  4. Verdaguar, M. Polyhedron 2001, 20, 1115 https://doi.org/10.1016/S0277-5387(01)00700-8
  5. Youngme, S.; Cheansirisomboon, A.; Danvirutai, C.; Chaichit, N.; Pakawatchai, C.; Albada, G. A.; Reedijk, J. Inorg. Chem. Commun. 2006, 9, 973 https://doi.org/10.1016/j.inoche.2006.05.022
  6. Adhikary, C.; Mal, D.; Sen, R.; Bhattacharjee, A.; Gutlich, P.; Chaudhuri, S.; Koner, S. Polyhedron 2007, 26, 1658 https://doi.org/10.1016/j.poly.2006.12.002
  7. Hubert, S.; Mohamadou, A.; Gerard, C.; Marrot, J. Inorg. Chim. Acta 2007, 360, 1702 https://doi.org/10.1016/j.ica.2006.09.008
  8. Huang, W.; Hu, D.; Gou, S.; Qian, H.; Fun, H.-K.; Raj, S. S. S.; Meng, Q. J. Mol. Struc. 2003, 649, 269 https://doi.org/10.1016/S0022-2860(03)00080-2
  9. Braga, D.; Grepioni, F.; Desiraju, G. R. Chem. Rev. 1998, 98, 1375 https://doi.org/10.1021/cr960091b
  10. Burrows, A. D.; Chan, C.-W.; Chowdhry, M. M.; McGrady, J. E.; Mingos, D. M. P. Chem. Soc. Rev. 1995, 329
  11. Liu, H. K.; Sun, W. Y.; Ma, D. J.; Yu, K. B.; Tang, W. X. Chem. Commun. 2000, 591
  12. Fujita, M.; Yu, S.-Y.; Kusukawa, T.; Funaki, H.; Ogura, K.; Yamaguchi, K. Angew. Chem. Int. Ed. Engl. 1998, 37, 2082 https://doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2082::AID-ANIE2082>3.0.CO;2-0
  13. Lee, Y.-M.; Lee, H.-W.; Kim, Y.-I. Polyhedron 2005, 24, 377 https://doi.org/10.1016/j.poly.2004.12.004
  14. Lee, H.-W.; Seo, H.-J.; Kim, H.-J.; Kang, S. K.; Heo, J. Y.; Kim, Y.-I. Bull. Korean Chem. Soc. 2007, 28, 885 https://doi.org/10.5012/bkcs.2007.28.5.855
  15. Kang, S. K.; Lee, Y.-M.; Kim, Y.-I.; Kim, Y.; Seff, K.; Choi, S.-N. Inorg. Chim. Acta 2004, 357, 2602 https://doi.org/10.1016/j.ica.2004.03.005
  16. Sheldrick, G. M. Acta Cryst. 2008, A64, 112
  17. Addison, A. W.; Nageswara, R. T.; Reedijk, J.; Rijn, J.; Verschoor, G. J. Chem. Soc. Dalton Trans. 1984, 1349
  18. Maroh, W. E.; Patel, K. C.; Hatfield, W. E.; Hodgson, D. Inorg. Chem. 1983, 22, 511 https://doi.org/10.1021/ic00145a028
  19. Jadeja, R. N.; Shah, J. R.; Suresh, E.; Paul, P. Polyhedron 2004, 23, 2465 https://doi.org/10.1016/j.poly.2004.07.025
  20. Gupta, N.; Gupta, R.; Chandra, S.; Bawa, S. S. Spectrochim. Acta Part A 2005, 61, 1175 https://doi.org/10.1016/j.saa.2004.06.038
  21. Lever, A. B. P. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier: Amsterdam, 1984
  22. Estes, W. E.; Wasson, J. W.; Hall, W. E.; Hatfield, W. E. Inorg. Chem. 1978, 17, 3657 https://doi.org/10.1021/ic50190a063
  23. Aggarwal, R. C.; Singh, N. K.; Singh, R. P. Inorg. Chem. 1981, 20, 2794 https://doi.org/10.1021/ic50223a012
  24. Alves, W. A.; Almeida- Folho, S. A.; Santos, R. H. A.; Ferreira, A. M. D. C. Inorg. Chem. Commun. 2003, 6, 294 https://doi.org/10.1016/S1387-7003(02)00757-8
  25. Moncol, J.; Mudra, M.; Lonnecke, P.; Hewitt, M.; Valko, M.; Morris, H.; Svorec, J.; Melnik, M.; Mazur, M.; Koman, M. Inorg. Chim. Acta 2007, 360, 3213 https://doi.org/10.1016/j.ica.2007.03.027
  26. Marsh, W. E.; Hatfield, W. E.; Hodgson, D. J. Inorg. Chem. 1982, 21, 2679 https://doi.org/10.1021/ic00137a029
  27. Tosik, A.; Maniukiewicz, W.; Bukowska- Strzyzewska, M.; Mrozinski, J.; Sigalas, M. P.; Tipis, C. A. Inorg. Chim. Acta 1991, 190, 193 https://doi.org/10.1016/S0020-1693(00)80253-4
  28. Tuna, F.; Patron, L.; Journaux, Y.; Andruh, M.; Plass, W.; Trombee, J. J. Chem. Soc. Dalton Trans. 1999, 539
  29. Hay, P. J.; Thibeault, J. C.; Hoffmann, R. J. Am. Chem. Soc. 1975, 97, 4884 https://doi.org/10.1021/ja00850a018

Cited by

  1. Synthesis and Characterisation of New Symmetrical Binucleating Ligands and Their Binuclear Copper(II) Complexes vol.2014, pp.2314-713X, 2014, https://doi.org/10.1155/2014/461546
  2. Aerobic Oxidative Coupling of 2-Naphthol Derivatives Catalyzed by a Hexanuclear Bis(μ-hydroxo)copper(II) Catalyst vol.33, pp.17, 2014, https://doi.org/10.1021/om500403k
  3. ] vol.67, pp.5, 2014, https://doi.org/10.1080/00958972.2014.902449
  4. The synthesis of N-methylbis[2-(dodecylthio)ethyl]amine (SNS) and investigation of its efficiency as new mononuclear catalyst complex in copper-based ATRP vol.23, pp.11, 2015, https://doi.org/10.1007/s13233-015-3132-z
  5. ) complex: magneto-structural correlation and anticancer activity vol.44, pp.19, 2015, https://doi.org/10.1039/C5DT00752F
  6. Halide copper(II) complexes of aromatic N-donor containing ligands: Structural, magnetic and reactivity studies vol.56, pp.8, 2015, https://doi.org/10.1134/S0022476615080168
  7. Evaluation of the metal-dependent cytotoxic behaviour of coordination compounds vol.47, pp.14, 2018, https://doi.org/10.1039/C7DT04604A
  8. Bis(3-methylpyridinium) tetrachloridocuprate(II) vol.65, pp.4, 2009, https://doi.org/10.1107/S1600536809007818
  9. Cu(II) complexes with square pyramidal (N2S)CuCl2 chromophore: Jahn–Teller distortion and subsequent effect on spectral and structural properties vol.370, pp.1, 2008, https://doi.org/10.1016/j.ica.2011.01.068
  10. Structures and Magnetic Properties of Monomeric Copper(II) Bromide Complexes with a Pyridine-Containing Tridentate Schiff Base vol.34, pp.12, 2008, https://doi.org/10.5012/bkcs.2013.34.12.3615
  11. Design of non-molecular coordination solids from aqueous solution: [CuIILnX(H2O)], where X=SO4, Cl or H2O and L=pyrazole, imidazole or glutamic acid and n=1 or 4 vol.126, pp.5, 2014, https://doi.org/10.1007/s12039-014-0678-9
  12. Cd(II) and Zn(II) Complexes Containing N,N'-Bidentate N-(Pyridin-2-ylmethylene)cyclopentanamine: Synthesis, Characterisation and Methyl Methacrylate Polymerisation vol.35, pp.10, 2008, https://doi.org/10.5012/bkcs.2014.35.10.2929
  13. Chromotropism in halo-bridged dimers. Structural characterization of bis(μ-halo)bis(halo N-(pyridin-2-ylmethyl)cyclohexanamine copper(II)) vol.69, pp.21, 2016, https://doi.org/10.1080/00958972.2016.1227972
  14. Insight into the antitumor activity of carbosilane Cu(II)-metallodendrimers through their interaction with biological membrane models vol.11, pp.28, 2008, https://doi.org/10.1039/c9nr03313k
  15. Structural and chromotropism properties of copper(II) complexes containing a tridentate ligand vol.74, pp.11, 2008, https://doi.org/10.1007/s11696-020-01228-9