DOI QR코드

DOI QR Code

Asymmetric Ring Opening of Epoxides Catalyzed by Novel Heterobimetallic Schiff-Bases Containing Transition Metal Salts

  • Kawthekar, RahulB (Fine Material Synthesis Laboratory, Department of Chemical Engineering, Inha University) ;
  • Bi, Wentao (Fine Material Synthesis Laboratory, Department of Chemical Engineering, Inha University) ;
  • Kim, Geon-Joong (Fine Material Synthesis Laboratory, Department of Chemical Engineering, Inha University)
  • 발행 : 2008.02.20

초록

An enantioselective ring opening of racemic terminal epoxides has been achieved by using heterobimetallic cobalt salen complexes with variety of nucleophiles. They were proven to be highly enantioselective and reactive for the synthesis of valuable chiral building blocks in enantio-riched forms up to 98% ee.

키워드

참고문헌

  1. Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936 https://doi.org/10.1126/science.277.5328.936
  2. Furrow, M. E.; Schaus, S. E.; Jacobsen, E. N. J. Org. Chem. 1998, 63, 6776 https://doi.org/10.1021/jo981332d
  3. Ready, J. M.; Jacobsen, E. N. Am. Chem. Soc. 1999, 121, 6068 https://doi.org/10.1021/ja990713l
  4. Li, W.; Thakur, S. S.; Chen, S.-W.; Shin, C. K.; Kawthekar, R. B.; Kim, G.-J. Tetrahedron Lett. 2006, 47, 3453 https://doi.org/10.1016/j.tetlet.2006.03.042
  5. Chen, S. W.; Thakur, S. S.; Li, W.; Shin, C. K.; Kawthekar, R. B.; Kim, G.-J. J. Mol. Cat. A: Chemical 2006, 259, 116 https://doi.org/10.1016/j.molcata.2006.06.002
  6. Chen, S.-W.; Kawthekar, R. B.; Kim, G.-J. Tetrahedron Lett. 2007, 48, 297 https://doi.org/10.1016/j.tetlet.2006.11.014
  7. Lee, K.-Y.; Kawthekar, R. B.; Kim, G.-J. Bull. Korean Chem. Soc. 2007, 28, 1553 https://doi.org/10.5012/bkcs.2007.28.9.1553
  8. Shibasaki, M.; Kanai, M.; Funabashi, K. Chem. Commun. 2002, 1989
  9. Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187 https://doi.org/10.1021/cr010297z
  10. Iida, T.; Yamamoto, N.; Matsunaga, S.; Woo, H.-G.; Shibasaki, M. Angew. Chem., Int. Ed. 1998, 37, 2223 https://doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2223::AID-ANIE2223>3.0.CO;2-Z
  11. Matsunaga, S.; Yoshida, T.; Morimoto, H.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8777 https://doi.org/10.1021/ja0482435
  12. Handa, S.; Gnanadesikan, V.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 4901
  13. Gruber, S. J.; Harris, C. M.; Sinn, E. The J. Chem. Phy. 1968, 49, 2183 https://doi.org/10.1063/1.1670383
  14. Gruber, S. J.; Harris, C. M.; Sinn, E. Inorg. Chem. 1968, 7, 268 https://doi.org/10.1021/ic50060a020
  15. Gruber, S. J.; Harris, C.; Harris, M.; Sinn, E. Inorg. & Nuc. Chem. Lett. 1967, 3, 495 https://doi.org/10.1016/0020-1650(67)80072-2
  16. Thakur, S. S.; Chen, S.-W.; Li, W.; Shin, C. K.; Kim, S.-J.; Koo, Y.-M.; Kim, G.-J. J. Organomet. Chem. 2006, 691, 1862 https://doi.org/10.1016/j.jorganchem.2005.12.044
  17. Uchikawa, O.; Okukado, N.; Sakata, T.; Arase, K.; Terade, K. Bull. Chem. Soc. Jpn. 1988, 61, 2025 https://doi.org/10.1246/bcsj.61.2025
  18. Bevinakatti, H. S.; Banerji, A. A. J. Org. Chem. 1992, 57, 6003 https://doi.org/10.1021/jo00048a040
  19. Akisanya, J.; Parkins, A. W.; Steed, J. W. Org. Proc. Res. & Dev. 1998, 2, 274 https://doi.org/10.1021/op9800313
  20. Bose, D. S.; Narsaiah, A. V. Bioorg. & Med. Chem. 2005, 13, 627 https://doi.org/10.1016/j.bmc.2004.10.057
  21. Bartoli, G.; Bosco, M.; Carlon, A.; Locatelli, M.; Melchorre, P.; Sambri, L. Org. Lett. 2004, 6, 3973 https://doi.org/10.1021/ol048322l
  22. Lu, X. B.; Liang, B.; Zhang, Y. J.; Tian, Y. Z.; Wang, Y. M.; Wang, H.; Zhang, R. J. Am. Chem. Soc. 2004, 126, 3732 https://doi.org/10.1021/ja049734s
  23. Lu, X. B.; Shi, L.; Wang, Y. M.; Zhang, R.; Zhang, Y. J.; Peng, X. J.; Zang, Z. C.; Li, B. J. Am. Chem. Soc. 2006, 128, 1664 https://doi.org/10.1021/ja056383o
  24. Berkessel, A.; Bradenburg, M. Org. Lett. 2006, 20, 4401
  25. Burk, R. M.; Roof, M. B. Tetrahedron Lett. 1993, 34, 395 https://doi.org/10.1016/0040-4039(93)85085-B
  26. Matsumoto, K.; Fuwa, S.; Kitajima, H. Tetrahedron Lett. 1995, 36, 6499 https://doi.org/10.1016/0040-4039(95)01300-7
  27. Shen, Y. M.; Duan, W.; Shi, L. M. J. Org. Chem. 2003, 68, 1559 https://doi.org/10.1021/jo020191j
  28. Paddock, R. L.; Nguyen, S. T. J. Am. Chem. Soc. 2001, 123, 11498 https://doi.org/10.1021/ja0164677
  29. Paddock, R. L.; Nguyen, S. T. Chem. Commun. 2004, 1622

피인용 문헌

  1. Stereoselective Synthesis with Carbon Dioxide vol.355, pp.11-12, 2013, https://doi.org/10.1002/adsc.201300422
  2. Enantioselective Cobalt-Catalyzed Transformations vol.114, pp.5, 2014, https://doi.org/10.1021/cr4004055
  3. Lipase vol.48, pp.5, 2016, https://doi.org/10.1002/kin.20986
  4. Synthesis of Chiral Cyclic Carbonates via Kinetic Resolution of Racemic Epoxides and Carbon Dioxide vol.8, pp.1, 2016, https://doi.org/10.3390/sym8010004
  5. Superior Effect of Ultrasonic Homogenization to Mechanical Agitation on Accelerating Reaction Rates in Asymmetric Ring Opening of Epoxides vol.38, pp.7, 2017, https://doi.org/10.1002/bkcs.11174
  6. Catalyzed by a Chiral-at-Iridium Complex pp.18645631, 2019, https://doi.org/10.1002/cssc.201802049
  7. ChemInform Abstract: Asymmetric Ring-Opening of Epoxides Catalyzed by Novel Heterobimetallic Schiff-Bases Containing Transition Metal Salts. vol.39, pp.28, 2008, https://doi.org/10.1002/chin.200828030
  8. Highly active oligomeric Co(salen) catalysts for the asymmetric synthesis of α-aryloxy or α-alkoxy alcohols via kinetic resolution of terminal epoxides vol.329, pp.1, 2010, https://doi.org/10.1016/j.molcata.2010.06.015
  9. Synthesis of New Bimetallic Chiral Salen Catalyst Bearing Co(BF4)2 Salt and Its Application in Asymmetric Ring Opening of Epoxide vol.31, pp.10, 2008, https://doi.org/10.5012/bkcs.2010.31.10.2973
  10. Enantio-conversion and -selectivity of racemic atenolol kinetic resolution using free Pseudomonas fluorescens lipase (Amano) conducted via transesterification reaction vol.6, pp.31, 2016, https://doi.org/10.1039/c6ra01942k
  11. Catalytic enantioselective synthesis using carbon dioxide as a C1 synthon vol.18, pp.42, 2008, https://doi.org/10.1039/d0ob01905d
  12. Synthesis and a Catalytic Study of Diastereomeric Cationic Chiral-at-Cobalt Complexes Based on (R,R)-1,2-Diphenylethylenediamine vol.60, pp.18, 2008, https://doi.org/10.1021/acs.inorgchem.1c00855