Effective Amidation of Carboxylic Acids Using (4,5-Dichloro-6-0x0-6H-pyridazin-1-yl)phosphoric Acid Diethyl Ester

Seung-Beom Kang, Heung-Seop Yim, Ju-Eun Won, Min-Jung Kim, Jeum-Jong Kim, Ho-Kyun Kim, Sang-Gyeong Lee, ${ }^{*}$ and Yong-Jin Yoon ${ }^{*}$
Department of Chemistry \& Envirommental Biotechnologv National Core Research Center, Research Institute of Aatural Sciences, Graduate School for M Holecular Materials and Vanochemistry, Gveongsang National Cnwersity, Jinju, Gyeongnam 660-701, Korea. E-mail: Wvoonaggnuackr
Received February 21, 2008

Abstract

(4.5-Dichloro-6-oxo-6 H -pyridazin-1-yl)phosphoric acid diethyl ester (3a) are efficient and selective coupling agents for the amidation of carboxylic acids. Amidation of aliphatic and aromatic carboxylic acids with aliphatic and aromatic amines using 3a under mild condition gave chemoselectively the corresponding amides in good to excellent yield. Three protected-dipeptides were also synthesized from H -BOC-Phe and O-Meamino acid lydrochlorides using 3a under mild condition.

Key Words : (4,5-Dichloro-6-oxo-6H-pyridazin-1-yl)phosphoric acid diethyl ester. Coupling agent. Pyridazinone, Amidation. Dipeptide

Introduction

Mild and effective amidation of carboxylic acids with amines is the most fundamental and important reactions in organic synthesis. ${ }^{1}$ Common routes to amides mostly involve the treatment of activated derivatives of carboxylic acids such as acyl halides. acid anhydrides or esters with ammonia or amines. ${ }^{2}$ However these methods have some disadvantages such as formation of by-products exthothermic reaction. and complicated conditions. ${ }^{3}$ In order to overcome the problems. a variety of reagents have been developed. ${ }^{+}$and continuing efforts are being made to find an ideally selective and effective reagent. For direct amidation of carboxylic acid under mild conditions. carboxylic acid must be activated to more reactive species by using an activator.
In our previous paper ${ }^{5-7}$ we reported the synthesis of anhydrides and esters using 4.5 -dichloro- 2 -[(4-nitrophen-yl)sulfonyl]pyridazin- $3(2 H)$-one as an activator. However. this activator requires two equivalents of carboxylic acid for the esterification. ${ }^{6}$ Therefore. we developed (6-oxo-6H-pyri-dazin-l-yl)phosphoric acids diethyl ester as more effective coupling agent. ${ }^{8}$ In this paper we would like to report on mild and effective amidation of carboxylic acids with amines. and also synthesis of some dipeptides by using (4.5-dichloro-6-oxo-6H-pyridazin-1-yl)phosphoric acid diethyl ester in one port.

Results and Discussion

4.5-Disubstituted-pyridazin- $3(2 H)$-ones were readily prepared by the reported methods. ${ }^{9}$ According to the literature. ${ }^{8}$ (4.5-disubstituted-6-oxo-6 H -pyridazin-1-yl)phosphoric acid diethyl esters 3 were prepared in $79-96 \%$ yields via the reaction of 4.5 -disubstituted-pyridazin- $3(2 H)$-ones (1) with diethyl chlorophosphate (2) in the presence of triethylamine

in acetonitrile at room temperature. ${ }^{8.9}$
Initially. direct amidation of 4-nitrobenzoic acid (4a) with aniline (5a) using 3 a were studied in a variety of representative organic solvents and bases (Table 1, entries 1-10). Exclusive amidation in excellent yields was obtained in potassium carbonate/THF (or ethyl acetate) and triethylamine/THF. Among theses systems. we selected potassium carbonate/THF or ethyl acetate system for the direct amidation of carboxylic acid with amine using 3a. The efficacy of 3b-3e for amidation was evaluated using 4-nitrobenzoic acid (4a) and aniline (5a) in the presence of potassium carbonate in THF at room temperature (Table 1, entries 11-14).

Compounds 3a-3d showed similar efficacy for the amidation under this condition. We selected compound 3a as a novel coupling agent for the amidation of carboxylic acids with amines because $\mathbf{3 b} \mathbf{- 3 d}$ are prepared from $\mathbf{3 a}$.

Amidation of 4-nitrobenzoic acid (4a) with various amines 5 using 3 a in the presence of potassium carbonate in THF at room temperature gave the corresponding amides $6 \mathrm{~b}-6 \mathbf{w}$ in good to excellent yields except for $6 \mathbf{e}$ and $6 \mathbf{f}$ (Table 2 and 3). When amines 5e and 5 f are used. 4-nitrobenzoic anhy'dride was yielded as the by-product.

Treatment of some aliphatic or aromatic carboxylic acids 4

Table 1. Amidation of 4 -nitrobenzoic acid (4a) with aniline (5a) using 3 at r.t.

Entry	3	Base	Solvent	Time (h)	$6 \mathrm{a}(\%)^{\text {a }}$
1	3a	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	3	96
2	3 a	$\mathrm{K}_{2} \mathrm{CO}_{3}$	toluene	6	90
3	3 a	$\mathrm{K}_{2} \mathrm{CO}_{3}$	EtoAc	3.5	95
4	3a	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{CH}_{3} \mathrm{CN}$	6	91
5	3a	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	92
6	3a	$\mathrm{K}_{2} \mathrm{CO}_{3}$	(Et)2O	34	74
7	3a	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{H}_{2} \mathrm{O}$	19	-
8	3a	$\mathrm{Et}_{3} \mathrm{~N}$	THF	1	94
9	3a	DMAP ${ }^{\text {b }}$	THF	1.5	85
10	3a	Resin ${ }^{\text {c }}$	THF	50	49^{d}
11	3b	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	6	90
12	3c	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	4.5	87
13	3d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	4	94
14	3 e	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	2.5	83

"Isolated yield. Pyridazin- $3(2 H)$-one derivatives were also isolated. ${ }^{6}$ DMAP $=\mathrm{NA}$-dimethylaminopyridine. ${ }^{\text {'Resin }}$ is Amberite-IRA66. d4Nitrobenzoic acid was recovered.

Scheme 2
with an aromatic anine 5 a or an aliphatic amine 5 g using $\mathbf{3 a}$ under same condition easily gave the corresponding amides $6 \mathrm{j}-6 \mathrm{w}$ in excellent yields (Table 3). Selective amidation of mixed amines is also often required.
Therefore we examined the selective amidation for a mixture of two amines such as $1^{\circ} / 2^{\circ}$ amine and aromatic/ aliphatic amine or bifunctional amines such as 2-mercaptoethanol and 4 -aminophenol (Table 4). The amidation of benzoic acid (7) with ethylamine/diethylamine gave N ethylbenzamide (8a) in excellent selectivity and in excellent yield (Table 4. entry 1). For the mixed amines such as cyclohexylamine/aniline and aniline/phenethylamine. aliphatic amine was also coupled with benzoic acid (7) under our conditions in excellent selectivity in high yield

Table 2. Amidation of 4 -nitrobenzoic acid (ta) with various amines 5 using 3 aa in the presence of potassium carbonate in tetrahy drofuran at r.t.

Entry	$\mathrm{NH}_{2}, 5$	Time (h)	Product	$6(\%)^{\text {a }}$
1	5b	2.5		6 b (98)
2	5c	3.5		6 c (92)
3	sd	48		6 d (80)
4	5e	7		$6 \mathrm{e}(57)^{\text {d }}$
5	5 f	7		$6 \mathrm{f}(43)^{\text {b }}$
6	5g	3		6g (96)
7	5h	5		6h (98)
8	5 i	2		6i (97)

${ }^{2}$ Isolated yield. 4.5-Dichloropyridazin-3(2H)-one was also isolated quantitatively. The cotreqpoending unitydride wus itelated
(Table 4, entries 2 and 3).
Amidation of aniline ($5 a$)/benzenethiol with benzoic acid (7) gave chemoselectively the corresponding amide 8 c (82%) as major and thioester $\mathbf{8 e}(6 \%)$ as minor (Table 4 . entry 4). Reaction of 4 -ammophenol ($\mathbf{5 k}$) with benzoic acid (7) under same condition also afforded chemoselectively the corresponding amide $8 f$ in 92% yield (Table 4 . entry 5).

On the other hand, we attempted to synthesize dipeptide using coupling agent $3 a$ at room temperature. N-BOC-Lphenylalanine (1 equiv.) was coupled with O-methyl Lisoleucine hydrochloride (1 equiv.) using 3a (1 equiv.) in the presence of triethylamine (2.3 or 4 equiv.) in some organic solvent such as methylene chloride, acetonitrile. acetone. toluene and tetralydrofuran at room temperature to give the corresponding dipeptides in $53-81 \%$ yields (Table 5 entries 1-7).
From preliminary experiments (Table 5 entries 1-7), we selected N-BOC-amino acid (9. 1 equiv.)/O-methyl-amino acid. HCl ($\mathbf{1 0}, 1$ equiv.)/3a(1 equiv.)/triethylamine (3 equiv.)/ THF system as the optimum condition at room temperature for the synthesis of dipeptides. Treatment of N-BOC-Lpheny lalanine ($\mathbf{1 0 b}$. 1 equiv.) was coupled with O-methyl Lphenylalanine hydrochloride (1 equiv.) or O-methyl Ltryptophan hydrochloride ($\mathbf{1 0 c} .1$ equiv.) using 3 a (1 equiv.) in the presence of triethy lamine (3 equiv.) in THF at room temperature to furnish the corresponding dipeptides 11 b (84%) or 11c (70%) yield (Table 5 entries 8 and 9).

The structures of prepared compounds were established by

Table 3. Amidation of some carboxylic acids $\mathbf{4}$ with 5 a or 5 g using 3 a in the potassium carbonate in THF at r.t.

${ }^{\prime}$ Isolated yield. 4,5-Dichloropyridazin- 3 (2 H)-one was also isolated.

Scheme 3

IR. NMR and elemental analysis. In all the reactions described above, reusable 4.5 -dichloropyridazin- $3(2 \mathrm{H})$-one (1a) and phosphonic acid diethyl ester were also isolated.
On the other hand. acid anhydride as an intermediate was not detected during the amidation except for $\mathbf{5 e}$ and $\mathbf{5 f}$ by monitoring using TLC. Really. only one equivalent of carboxylic acid required for the amidation under these
reaction condition. This amidation mechanism is different from it for the reaction using 4.5 -dichloro- 2 -[(4-nitroben-zenesulfonyl)]pyridazin- $3(2 \mathrm{H})$-one ${ }^{6}$ as coupling agent. The amidation of carboxylic acid using compound 3a may be proceeded via two steps: the formation of acyl phosphate in first step and then amine react with acyl phosphate to give the amide in second step. The reactivity of acyl phosphate

Table 4 . Competition reaction of a misture amines (or bifunctional amine) with 7 in the presence of potassium carbonate in THF at r.t.

Entry	Mixed amines (5)	Reaction Time	Product	8 (\%) ${ }^{\text {a }}$
1	$\mathrm{EtNH}_{2}(\mathbf{5 g}) \mathrm{Et}_{2} \mathrm{NH}(5 \mathbf{j})$	1 h	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONHEt}$	$8 \mathrm{a}(90)$
2	$c-\mathrm{C}_{6} \mathrm{H}_{31} \mathrm{NH}_{2}(5 \mathrm{~h}) / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(5 \mathrm{a})$	0.5 h	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}-{\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}}$	8b (78)
			$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONHC}_{6} \mathrm{H}_{5}$	8 c (8)
3	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}(5 \mathrm{i}) / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(5 \mathrm{a})$	0.5 h	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	8d (72)
			$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CONH} \mathrm{C}_{6} \mathrm{H}_{5}$	8c (12)
4	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{5}(5 \mathrm{a}) / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}$	3 h	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CONHC}_{6} \mathrm{H}_{3}$	8c (82)
			$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COSC}_{6} \mathrm{H}_{5}$	8 e (6)
5	$4-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OH}(5 \mathrm{k})$	2.5 h	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CONHC}_{6} \mathrm{H}_{4} \mathrm{OH} 4$	$8 \mathbf{f}$ (92)

"Isolated yield. 4.5-Dichloropyndazin-3(2H)-one was also isolated.

Table 5. Synthesis of dipeptides 11 using $\mathbf{3 a}$ in organic solvent at r.t. ${ }^{\text {a }}$

Entry	Amino acid. HCl 10	$\mathrm{Et}{ }_{3} \mathrm{~N}$ (equiv.)	Reaction Condition	Disulfide 11 (yield \% ${ }^{\text {c }}$
1	O-Me-Leu(10 a)	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2,} 48 \mathrm{~h}$	N-BOC-Phe-Lell-O-Me (11a, 61)
2	O-Me-Leu(10a)	2	$\mathrm{CH}_{3} \mathrm{CN}, 43 \mathrm{~h}$	N-BOC-Phe-Leu-O-Me (11a, 69)
3	O-Me-Leu(10a)	2	Acetone, 33 h	N-BOC-Phe-Leu-O-Me (11a, 53)
4	O-Me-Leu (10a)	2	Toluene, 26 h	N-BOC-Phe-Leu-O-Me (11a, 66)
5	O-Me-Leu (10a)	2	THF, 24 h	N-BOC-Phe-Leu-O-Me (11a, 71)
6	O-Me-Leu (10a)	3	THF, 9 h	N-BOC-Phe-Leu-O-Me (11a, 81)
7	O -Me-Leu(10a)	4	THF, 9 h	N-BOC-Phe-Leu-O-Me (11a, 80)
8	O-Me-Phe (10b)	3	THF, 6 h	N-BOC-Phe-Phe-O-Me (11b, 84)
9	$\bigcirc-\mathrm{Me}-\mathrm{Tip}(10 \mathrm{c}$)	3	THF, 5 h	A-BOC-Phe-Trp-O-Me (11c, 70)

${ }^{2}+, 5$-Dichloropyridazin- $3(2 \mathrm{H})$-one was isolated. ${ }^{\text {t Isolated vields. }}$
with amine may be higher then it of carboxylate ion under our condition. Therefore, (4.5 -dichloro- 6 -oxo- 6 H -pyridazin-l-yl)phosphoric acid diethyl ester (3a) is more effective coupling agent than 4.5 -dichloro-2-[(4-nitrobenzenesulfon-yl)]pyridazin- $3(2 \mathrm{H})$-one ${ }^{6}$ for amidation of carboxylic acid.

Conclusions

In conclusion, compound $\mathbf{3 a}$ is an efficient and selective coupling agent for amidation of carboxylic acids with amines under the basic condition. It also has some advantages: i) the reaction condition is mild and basic, ii) this method shows good selectivity for primary or aliphatic amines in the presence of secondary or aromatic amines with high yields. iii) the coupling agent is easy to prepare, and iv) compound 1 can be recovered quantitatively for reuse. We also believe that these coupling agents should be particularly applicable to solid-phase synthesis amidation of carboxylic acid and synthesis of peptides.

Experimental Section

General. Melting points were determined with a capillary apparatus and uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 300 MHz spectrophotometer with chemical shift values reported in dunits (ppm) relative to an internal standard (TMS). IR spectra were obtained on a IR spectrophotometer. Elemental analyses were performed with a CHNS-932 (Leco). Open-bed chromatography was carried out on silica gel (70-230 mesh. Merck) using gravity flow. The column was packed as slurries with the elution solvent. The specific rotation values were detemined by a Digital polarimeter (DIP-1000. Jasco). (4.5-Disubstituted-6-oxo$6 H$-pyridazin-1-yl)phosphoric acid diethyl esters 3 were synthesized by the literature method. ${ }^{8}$
Typical procedure for amidation of carboxylic acid. A solution of carboxylic acid $+(1$ equiv.) amine 5 (1.1 equiv.).
base (l.1 equiv.). coupling agent 3 (1.5 equiv.) and solvent (30 mL) was stirred at room temperature until carboxylic acid disappeared by TLC monitoring. After filtering the mixture. the filtrate was evaporated under reduced pressure. The resulting residue was applied to the top of an open-bed silica gel column ($2.5 \times 11 \mathrm{~cm}$). The column was eluted with methylene chloride or n-hexane/EtOAc (1:1, v/v). Fractions containing the amide were combined. and evaporated under reduced pressure to give the amide 6. And fractions containing pyridazinone derivative were combined. and evaporated under reduced pressure to give pyridazinone derivative.
N-Phenyl-4-nitrobenzamide (6a). $\mathrm{Mp} 213-214^{\circ} \mathrm{C}$ (lit. ${ }^{10}$ $\operatorname{mp} 211-212^{\circ} \mathrm{C}$). $\mathrm{IR}(\mathrm{KBr}) 3350.1660 .1600,1540,1500$, 1440. 1360. 1330. 1270. 1110, 1020, 880.860, $760 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO-di): $\delta 7.15(\mathrm{t}, 1 \mathrm{H} . J=7.3 \mathrm{~Hz}) .7 .39(\mathrm{t}, 2 \mathrm{H} . J=$ $8.0 \mathrm{~Hz}) .7 .79(\mathrm{~d} .2 \mathrm{H} . J=8.3 \mathrm{~Hz}) .8 .19(\mathrm{~d} .2 \mathrm{H} . J=8.8 \mathrm{~Hz})$, 8.38 (d. $2 \mathrm{H} . J=8.8 \mathrm{~Hz}$). 10.57 ppm (s. NH. $\mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}): $\delta 121.0$. 124.0. 124.6, 129.2, 129.7. 139.2, 141.1, 149.6. 164.3 ppm . Elemetal analysis calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: $\mathrm{C} 64.46, \mathrm{H} 4.16$, N 11.56 ; found C 64.37. H 4.25. N 11.49

N -(4-Methoxyphenyl)-4-nitrobenzamide (6b). Mp 196$197^{\circ} \mathrm{C}$ (lit. ${ }^{11} \mathrm{mp} \mathrm{193-196}{ }^{\circ} \mathrm{C}$). IR (KBr) 3320, 1650,1600, 1540. 1520. 1470. 1420. 1360. 1320. 1310. 1250. 1180, $1030.830 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta 3.76(\mathrm{~s}, 3 \mathrm{H}), 6.96$ (d. $2 \mathrm{H}, J=9.0 \mathrm{~Hz}$). 7.69 (d. $2 \mathrm{H} . J=9.0 \mathrm{~Hz}$) 8.18 (d. $2 \mathrm{H}, J=$ 8.8 Hz) 8.37 (d. $2 \mathrm{H} . J=8.8 \mathrm{~Hz}$). 10.45 ppm (s. $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}): $\delta 55.7 .114 .3,122.5$, 124.0. 129.5, 132.2. 141.2. 149.5, 156.3. 163.8 ppm . Elemental analysis calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}$: C 61.76, H 4.44 . N 10.29. found C 61.87. H 4.35, N 10.38 .

N -(4-Chlorophenyl)-4-nitrobenzamide (6c). Mp 228$229^{\circ} \mathrm{C}$ (lit. ${ }^{11} \mathrm{mp} 227^{\circ} \mathrm{C}$) IR (KBr) 3450, 3150, 1690, 1610, 1540. 1520. 1500. 1400. 1360, 1340, 1310, 1250, 1090, $1010.860 .840 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{2}$): $\delta 7.44$ (d, $2 \mathrm{H}, J$ $=8.8 \mathrm{~Hz}) .7 .84(\mathrm{~d} .2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.19(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz})$,
8.38 (d, 2H. $J=8.8 \mathrm{~Hz}$), $10.68 \mathrm{ppm}\left(\mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$): $\delta 122.4,124.0,128.3$. 129.1. 129.7. 138.1, 140.7 .149 .7 .164 .4 ppm. Elemental analysis calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{ClO}_{3}$: C $56.43, \mathrm{H} 3.28, \mathrm{~N} \mathrm{10.13}$: found C 56.32. H 3.37, N 10.30.

N -(+-Nitrophenyl)-t-nitrobenzamide (6d). Mp 268-270 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{12} \mathrm{mpp} 264-266^{\circ} \mathrm{C}$). IR (KBr) 3400, 3150, 1700, 1630. 1610. 1560, 1540, 1510, 1420, 1360. 1350. 1320. 1260. 1190. $1120,860 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{2}$): $\delta 8.06$ (d. $2 \mathrm{H} . J$ $=9.2 \mathrm{~Hz}), 8.22(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.30(\mathrm{~d}, 2 \mathrm{H} . J=9.2 \mathrm{~Hz})$. 8.40 (d, $2 \mathrm{H} . J=8.8 \mathrm{~Hz}$). 11.10 ppm (s. $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}): δ 120.6, 124.1, 125.3. 130.0. 140.3. 143.3. 145.4 .151 .4 .165 .2 ppm . Elemental analysis calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{5}$: C 54.36 . H3.16. N 14.63: found C 54.48. H 3.08, N 14.54.

N -(3-Nitrophenyl)-4-nitrobenzamide (6e). Mp 227-228 ${ }^{\circ} \mathrm{C}$. IR (KBr) 3400. 3010, 3090. 1680, 1620. 1600, 1550. $1540,1520.1420,1340,1320.1280,1240,1080.1000 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{5}): $\delta 7.69(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 8.00(\mathrm{~d} .2 \mathrm{H}$. $J=8.2 \mathrm{~Hz}) .8 .18-8.24(\mathrm{~m} .3 \mathrm{H}), 8.40(\mathrm{~d} .2 \mathrm{H}, J=8.8 \mathrm{~Hz}) .8 .79$ (d, $1 \mathrm{H}, J=1.9 \mathrm{~Hz}$). $11.0 \mathrm{ppm}\left(\mathrm{s} . \mathrm{NH} . \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }^{6}$) δ 115.0. 119.1. 124.1, 126.7, 129.8. 130.6. $140.2,140.3,148.3 .149 .6 .164 .8 \mathrm{ppm}$. Elemental analysis calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{5}: \mathrm{C} 54.36$. H 3.16. N 14.63: found C 54.48, H 3.08. N 14.54 .
N-(Pyridin-3-yl)-t-nitrobenzamide (6f). Mp 137-138 ${ }^{\circ} \mathrm{C}$. IR (KBr) 3200. 3140, 3100. 3000, 1680. 1590, 1540. $1520.1470,1440.1350,1320.1150 .1090,1000.880 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}$) : $\delta 7.19-7.23$ (m. IH). 7.88 (t. $1 \mathrm{H}, J=$ $8.5 \mathrm{~Hz}), 8.19$ (d. $1 \mathrm{H} . J=8.4 \mathrm{~Hz}$). $8.19(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz})$. 8.23 (d. $2 \mathrm{H}, J=8.8 \mathrm{~Hz}$). 8.34 (d. $2 \mathrm{H} . J=8.8 \mathrm{~Hz}$), 8.42 (d. $1 \mathrm{H}, J=4.8 \mathrm{~Hz}$), $11.16 \mathrm{ppm}\left(\mathrm{s}, \mathrm{NH} . \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}): $\delta 115.3$. 120.7,. 123.9, 130.0. 138.7. $140.4 .148 .5,149.8 .152 .3 .165 .0 \mathrm{ppm}$. Elemental analysis calcd for $\mathrm{C}_{1}-\mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$: C 59.26 . H 3.73. N 17.28: found C 59.34. H 3.81, N 17. 15.
N-Ethyl-t-nitrobenzamide ($\mathbf{6 g}$). Mp $148-149{ }^{\circ} \mathrm{C}$ (lit. ${ }^{13}$ $\mathrm{mp} 140-142^{\circ} \mathrm{C}$). IR (KBr) 3300. 3010, 3000, 2950. 2900. 1650, 1610, 1560, 1530, 1480, 1350, 1320, 1300, 1160 . 1140. $1110 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 71.28(\mathrm{t}, 3 \mathrm{H}, J=7.3$ $\mathrm{Hz}), 3.48-3.57(\mathrm{~m}, 2 \mathrm{H}), 6.43$ (s. $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable). $7.93(\mathrm{~d} .2 \mathrm{H} . J=8.8 \mathrm{~Hz}) .8 .26 \mathrm{ppm}(\mathrm{d} .2 \mathrm{H} . J=8.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.7,35.3,123.7$. 128.1. 140.4, 149.5. 165.4 ppm. Elemental analysis calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}$: $\mathrm{C} 55.67 . \mathrm{H}$ 5.19 , N 14.43 : found C 55.61. H 5.31, N 14.30.
N-Cyclohexyl-4-nitrobenzamide (6h). Mp $205-206{ }^{\circ} \mathrm{C}$ (lit. ${ }^{14} \mathrm{mp} 207^{\circ} \mathrm{C}$). IR (KBr) 3350. 3150, 3100. 2970, 2890. 1650. 1610, 1560, 1530, 1470, 1360, 1340. 1330. 1300. 1160. $1120 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.20-1.33(\mathrm{~m}, 3 \mathrm{H})$. $1.31-1.48(\mathrm{~m} .2 \mathrm{H}), 1.66-1.71(\mathrm{~m} .1 \mathrm{H}) .1 .75-\mathrm{I} .81(\mathrm{~m} .2 \mathrm{H})$. 2.03-2.08 (m. 2H), 3.94-4.04 (m. 1H), 6.03 (s. NH. $\mathrm{D}_{2} \mathrm{O}$ exchangeable). 7.91 (d, $2 \mathrm{H}, J=8.9 \mathrm{~Hz}$), 8.27 ppm (d. $2 \mathrm{H} . J$ $=8.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.8 .25 .5 .33 .1,49.2$. 123.8. 128.0, 140.7. 149.5. 164.6 ppm . Elemental analysis calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}$: C 62.89. H 6.50. N II.28: found C 63.02. H 6.61, N 11.33
N-Phenylethyl-4-nitrobenzamide (6i). Mp 213-214 ${ }^{\circ} \mathrm{C}$

IR (KBr) $3350,3100,1660,1610.1540 .1520 .1500 .1450$. 1360. 1330, 1270. 1180, 1120, 1080, 1020. $920 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{i}) $\delta 2.95$ (t. $2 \mathrm{H}, J=7.5 \mathrm{~Hz}$). 3.73 (q. $2 \mathrm{H}, J$ $=6.0,6.8 \mathrm{~Hz}), 6.43\left(\mathrm{~s} . \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). $7.21-7.35$ $(\mathrm{m}, 5 \mathrm{H}) .7 .83$ (d. $2 \mathrm{H}, J=8.8 \mathrm{~Hz}$). $8.23 \mathrm{ppm}(\mathrm{d} .2 \mathrm{H}, J=8.8$ Hz). ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$): $\delta 35.5 .41 .4$. 123.8. 126.8. 128.1, 128.7, 128.8. $138.5 .140 .2,149.5,165.5 \mathrm{ppm}$. Elemental analysis calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C $66.66, \mathrm{H} 5.22$. N 10.36: found C 66.54. H 5.32, N 10.42
N-Phenyl-4-methylbenzamide (6 j). $\mathrm{Mp} \quad 144-145{ }^{\circ} \mathrm{C}$ (lit. ${ }^{15} \mathrm{mp} 145-147^{\circ} \mathrm{C}$). IR (KBr) $3370,3070.3050 .2970$, 2930. 1660. 1620. 1600. 1530, 1520, 1450, 1380, 1330 , 1300. 1270. 1250. 1200. 1120. $920.890,850.840,760.700$, $660 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.4 \mathrm{l}(\mathrm{s} .3 \mathrm{H}) \cdot 7 \cdot 13(\mathrm{t} .1 \mathrm{H}, J=$ $7.4 \mathrm{~Hz}) .7 .26(\mathrm{~d} .2 \mathrm{H}, J=7.9 \mathrm{~Hz}) .7 .35(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, 7.63 (d, $2 \mathrm{H} . J=8.2 \mathrm{~Hz}$). 7.76 (d. $2 \mathrm{H} . J=8.2 \mathrm{~Hz}$), 7.86 ppm (s, NH. D2O exchangeable). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 21.5$. 120.2, 124.4. 127.1. 129.1. 129.4. 132.2, 138.1, 142.3, 165.7 ppm. Elemental analysis calcd. for $\mathrm{C}_{14} \mathrm{H}_{33} \mathrm{NO}: \mathrm{C} .79 .59, \mathrm{H}$ 6.20. N 6.63 : found C 79.71. H 6.28, N 6.54 .
N-Ethyl-+-methylbenzamide ($6 \mathbf{k}$). Mp $90-92{ }^{\circ} \mathrm{C}$ (lit. ${ }^{13}$ $\mathrm{mp} 90-93^{\circ} \mathrm{C}$). IR (KBr) 3290, 3100. 3000. 2950. 2900. 1640. 1560. 1520. 1480. 1360, 1310, 1290, 1270, 1200, $1150,950 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.23(\mathrm{t}, 3 \mathrm{H} . J=7.3$ $\mathrm{Hz}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .3 .43-3.53(\mathrm{~m} .2 \mathrm{H}), 6.24(\mathrm{~s}, \mathrm{NH}, \mathrm{D}, \mathrm{O}$ exchangeable), 7.20 (d, $2 \mathrm{H} . J=8.2 \mathrm{~Hz}$). $7.66 \mathrm{ppm}(\mathrm{d} .2 \mathrm{H}, J$ $=8.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.9 .21 .4 .34 .9,126.9$. 129.1, $132.0,141.6,167.5 \mathrm{ppm}$. Elemental analysis calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C} 73.59$. H 8.03: N 8.58 : found C 73.48 . H 8.10. N 8.49 .
N-Phenylcyclohexanamide (61). Mp $145-146{ }^{\circ} \mathrm{C}$. IR (KBr) $3260,3200.3150,3100.2950 .2870 .1670 .1600$, 1560. 1510. 1500. 1460. 1350, 1330, 1300, 1260, 1210. $1190 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.20-1.31(\mathrm{~m}, 3 \mathrm{H}) .1 .47-$ $1.60(\mathrm{~m}, 2 \mathrm{H}) .1 .66-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.83(\mathrm{~m} .2 \mathrm{H}) .1 .91-$ $1.95(\mathrm{~m} .2 \mathrm{H}) .2 .18-2.29(\mathrm{~m}, 1 \mathrm{H}) .7 .07(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz})$, $7.28(\mathrm{t}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}) .7 .49\left(\mathrm{~s} . \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $7.53 \mathrm{ppm}(\mathrm{d} .2 \mathrm{H} . J=7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.6$. $25.7 .29 .7,46.5 .119 .9,124.1,128.9 .138 .2 .174 .6 \mathrm{ppm}$. Elemental analysis calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C} 76.81, \mathrm{H} 8.43$. N 6.89 : found C 76.92 . H8.52. 6.97 .
N-Ethylcyclohexaneamide (6m). Mp $96-97^{\circ} \mathrm{C}$ (lit. ${ }^{13} \mathrm{mp}$ $84-88^{\circ} \mathrm{C}$). IR (KBr) 3330. 2950. 2880, 1650, 1560, 1460 , 1400. 1340. 1270, 1230, 1160, 950. 920, $680 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.13(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) .1 .18-1.32(\mathrm{~m}, 3 \mathrm{H}) .1 .37-$ $1.49(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.68(\mathrm{~m}, 1 \mathrm{H}) .1 .76-1.87(\mathrm{~m} .4 \mathrm{H}) .2 .00-$ $2.11(\mathrm{~m} .1 \mathrm{H}) .3 .23-3.32(\mathrm{~m} .2 \mathrm{H}) .5 .59 \mathrm{ppm}\left(\mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 14.9 .25 .7 .25 .8$ 29.7.34.1. 45.6, 175.9 ppm . Elemental analysis calcd. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{ON}: \mathrm{C} 69.93$, H $11.04, \mathrm{~N} 9.02$: found C 69.57, H $10.96, \mathrm{~N} 9.10$.
N-Phenyl-2,2-diphenylacetamide (6 n). Mp $166-168^{\circ} \mathrm{C}$. IR (KBr) $3310,3210,3150,3100.3070$. 1660. 1600. 1560. 1500. 1450. 1360, 1320, 1260. 1180, 1080, $1040 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 5.07(\mathrm{~s}, \mathrm{IH}) .7 .08(\mathrm{t}, 1 \mathrm{H} . J=7.4 \mathrm{~Hz}) .7 .23-$ $7.37(\mathrm{~m} .12 \mathrm{H}), 7.40\left(\mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $7.44 \mathrm{ppm}(\mathrm{d} .2 \mathrm{H} . J$ $=7.9 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 60.1$. 119.9, 124.5, 127.5 , 128.9, 129.0. 137.2. 137.7, 139.1, 170.1 ppm. Elemental
analysis calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}$ 83.59. H 5.96. N 4.87. found C 83.61, $\mathrm{H} 6.01, \mathrm{~N} 4.90$.

N -Ethyl-2,2-diphenylacetamide (60). Mp $13+-135^{\circ} \mathrm{C}$ IR (KBr) 3330. 3060, 3040, 2990. 2890, 1640. 1600, 1530. 1490. 1480. 1450. 1360. 1320, 1220, 1060, $1020 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl $)^{2}: \delta 1.75(\mathrm{t} .3 \mathrm{H} . J=7.2 \mathrm{~Hz}), 3.24-3.37(\mathrm{~m}, 2 \mathrm{H})$. 4.89 (s. 1H), 5.73 (s. NH, $\mathrm{D}_{2} \mathrm{O}$ exchangeable). 7.21-7.33 ppm ($\mathrm{m}, 10 \mathrm{H}$) ${ }^{13}{ }^{3} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}$): $\delta 14.8,34.7 .59 .2 .127 .2$. 128.7. 128.9. 139.7. 171.7 ppm . Elemental analysis calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ON}$: C 80.30 . H 7.16, N 5.85 ; found C 80.35 . H 7.24, N 5.93
N-Phenyloctaneamide (6p). $\mathrm{Mp} 50-51^{\circ} \mathrm{C}$ IR (KBr) 3350 . 3100. 2950, 2870, 1670, 1610, 1550. 1510. 1480. 1460. $1400,1320,1310.1260 .1200,1120,1080,970,900 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .1 .22-1.38(\mathrm{~m}$. $8 \mathrm{H}), 1.70-1.77(\mathrm{~m}, 2 \mathrm{H}), 2.34$ (t. $2 \mathrm{H} . J=7.7 \mathrm{~Hz}), 7.28(\mathrm{~s} . \mathrm{NH}$. $\mathrm{D}_{2} \mathrm{O}$ exchangeabale), $7.30(\mathrm{t}, 3 \mathrm{H}, J=8.3 \mathrm{~Hz}) .7 .51 \mathrm{ppm}(\mathrm{d}$. $2 \mathrm{H}, J=7.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.0 .22 .6,25.6,29.0$. 29.2, 31.7. 37.8. 119.8. 124.1, 129.0, 138.0, 171.4 ppm . Elemental analysis calcd. for $\mathrm{C}_{1+} \mathrm{H}_{21} \mathrm{ON}: \mathrm{C}$ 76.67. H 9.65, N 6.39: found C 76.81, H 9.73, N 6.45
N-Ethyloctaneamide (6q). Liquid. IR (KBr) 3330.3120. 2960, 2900. 1660. 1560, 1480, 1390, 1280. $1160 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 0.88(\mathrm{t}, 3 \mathrm{H} . J=6.9 \mathrm{~Hz}), \mathrm{I} .13(\mathrm{t} .3 \mathrm{H} . J=7.3$ $\mathrm{Hz}), 1.28-1.33(\mathrm{~m}, 8 \mathrm{H}), 1.57-1.66(\mathrm{~m} .2 \mathrm{H}), 2.17(\mathrm{t}, 2 \mathrm{H}, J=$ 7.9 Hz), 3.23-3.32 (m. 2 H). $6.27 \mathrm{ppm}\left(\mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 13.9,14.7,22.5 .25 .8 .29 .0 .29 .2$. 31.6, 34.2. 36.7, 173.3 ppm . Elemental analysis calcd. for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{ON}$: C 70.12. H 12.36. N 8.18: found C 70.04. H 12.23. N 8.26.

N -Phenyl-2,2-dimethylcyclopropanecarboxamide (6r). $\mathrm{Mp} 98-100{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}) 3300,3200.3150 .3100 .3020$. 2970. 2950, $2900,1660,1600,1540$. 1500. 1450. 1410 . $1380.1320,1280.1260 .1200,1120,1100.1050 .990 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.19-1.27(\mathrm{~m} .2 \mathrm{H}), 1.16(\mathrm{~s} .3 \mathrm{H}) .1 .23(\mathrm{~s}$. $3 \mathrm{H}), 1.40-1.45(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}) .7 .27(\mathrm{t}, 2 \mathrm{H}$. $J=7.8 \mathrm{~Hz}), 7.51(\mathrm{~d} .2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 7.67 \mathrm{ppm}\left(\mathrm{s} . \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ 18.7. 20.7, 22.7. 27.1. 30.0. 119.7. 123.8. 128.9. 138.4. 170.1 ppm . Elemental analysis calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C} 76.16$. H 7.99. N 7.40. found C 76.22 . H 8.08 . N 7.51
N -Ethyl-2,2-dimethyleycloproanecarboxamide (6 s). Liquid. IR (KBr) $3340,3100.2980,2900.1660,1560,1460$. 1390. 1290. 1240. 1160. 1130. 1100. $980.880 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{\mathrm{s}}$): $\delta 0.67-0.72(\mathrm{~m}, \mathrm{IH}) .1 .12(\mathrm{~s}, 3 \mathrm{H}), 1.11-1.16$ $(\mathrm{t}, 3 \mathrm{H} . J=7.3 \mathrm{~Hz}), 1.17(\mathrm{~s}, 3 \mathrm{H}) .1 .21-1.27(\mathrm{~m}, 1 \mathrm{H}), 3.25-$ 3.34 (m, 2H). 5.82 (s. NH. $\mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 15.1,18.7,19.9 .21 .1,27.1 .29 .0 .34 .5,171.3$ ppm. Elemental analysis calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{ON}: \mathrm{C} 68.04 . \mathrm{H}$ 10.71. N 9.92: found C 68.11. H 10.64. 10.10.
N-Phenylfuran-2-carboxamide (6t). Mp 122-123 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{16} \mathrm{mp} \mathrm{123-124}{ }^{\circ} \mathrm{C}$). IR (KBr) 3280, 3150, 3050. 1660. 1600. 1580, 1520, 1500, 1480, 1440. 1380. 1320. 1310. 1270. 1230, 1170, 1120. 1080, 1010, 940, $910 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 6.51-6.53(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{t} .1 \mathrm{H} . J=7.4 \mathrm{~Hz})$. $7.21(\mathrm{~d}, 1 \mathrm{H} . J=3.5 \mathrm{~Hz}) .7 .34(\mathrm{t}, 2 \mathrm{H} . J=8.4 \mathrm{~Hz}), 7.47-7.48$ (m. 1H). 7.65 (d. $2 \mathrm{H}, J=8.7 \mathrm{~Hz}$). 8.19 (s. NH. $\mathrm{D}_{2} \mathrm{O}$ ex-
changeable). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 112.6,115.3,120.0 .124 .6$, 129.1, 137.4. 144.3, 147.8. 156.2 ppm. Elemental analysis calcd for $\mathrm{C}_{11} \mathrm{H}_{3} \mathrm{ON}: \mathrm{C} 70.58, \mathrm{H} 4.85$. N 7.48 ; found C 70.67 . H 4.79. N 7.53 .
N-Ethylfuran-2-carboxamide ($\mathbf{6 u}$). Liquid. IR (KBr) 3350. 3150. 3100. 3020. 2970, 2900, 1660, 1600, 1590, 1540. 1490. 1460. 1400. 1320. $1240.1200 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.23(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) .3 .41-3.50(\mathrm{~m}, 2 \mathrm{H}) .6 .47-$ $6.48(\mathrm{~m}, \mathrm{IH}) .6 .60\left(\mathrm{~s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). $7.09(\mathrm{~d} .1 \mathrm{H}$, $J=3.5 \mathrm{~Hz}$), $7.42 \mathrm{ppm}(\mathrm{t}, 1 \mathrm{H} . J=1.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.8,34.0 .112 .0$. $113.8 .143 .7,148.1,158.4$ ppm. Elemental analysis calcd. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{ON}: \mathrm{C} 60.42, \mathrm{H}$ 6.52. N 10.07 ; found C 60.37. H 6.59. 10.16.
N-Phenylferrocene-2-carboxamide (6v). Mp 206-207 ${ }^{\circ} \mathrm{C}$. IR (KBr) $3300,3100.1640,1600.1520,1460,1430$. 1380. 1310, 1300, 1260. 1240, 1130, 1020. $1000,900 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.25(\mathrm{t}, 5 \mathrm{H} . J=4.0 \mathrm{~Hz}) .4 .42(\mathrm{t} .2 \mathrm{H}, J=$ $1.9 \mathrm{~Hz}), 4.78(\mathrm{t} .2 \mathrm{H} . J=1.9 \mathrm{~Hz}) .7 .12(\mathrm{t} .1 \mathrm{H}, J=4.7 \mathrm{~Hz})$, $7.36(\mathrm{t}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}) .7 .39\left(\mathrm{~s} . \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $7.59 \mathrm{ppm}(\mathrm{d} .2 \mathrm{H}, J=7.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 68.3$. $69.9,70.8,76.3$. $119.8,124.0,129.1,138.2 .168 .5 \mathrm{ppm}$. Elemental analysis calcd. for $\mathrm{C}_{6} \mathrm{H}_{21} \mathrm{NOFe}$ C 66.91 . H 4.95, N 4.59 ; found C 67.02 . H 5.02. N 4.64 .

N -Ethylferrocene-2-carboxamide (6w). Mp $157-159^{\circ} \mathrm{C}$. IR (KBr) $3310,3120,3000,2960$. 1640. 1560. 1480. 1430. 1400. 1320, 1240, 1200. 1160, 1120, 1070. $1040 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl $): \delta 1.23(\mathrm{t}, 3 \mathrm{H} . J=7.2 \mathrm{~Hz}), 3.42(\mathrm{~m} .2 \mathrm{H}), 4.20$ $(\mathrm{s}, 5 \mathrm{H}) .4 .33(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}) .4 .66(\mathrm{t}, 2 \mathrm{H} . J=1.9 \mathrm{~Hz})$, 5.72 ppm (s. NH. $\mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ 15.3. 34.4, 68.0. 69.7. 70.3, 76.4. 170.1 ppm. Elemental analy sis calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ONFe}$: C 60.73, H 5.88 , N 5.45 : found C 60.82 . H 5.94, 5.52 .

Typical procedure for amidation of carboxylic acid with a mixed amines (or bifunctional amine). A solution of benzoic acid (7, 1 equiv.). a mixed amine ($1: 1$ equiv.), potassium carbonate (1.1 equiv), coupling agent 3a (1.5 equiv.) and THF (30 mL) was stirred at room temperature until carboxylic acid disappeared by TLC monitoring. After filtering the mixture. the solvent was evaporated under reduced pressure. The resulting residue was applied to the top of an open-bed silica gel column ($2.5 \times 10 \mathrm{~cm}$). The column was eluted with ethyl acetate/methylene chloride ($1: 4 . \mathrm{v} / \mathrm{v}$). Fractions containing the amide were combined. and evaporated under reduced pressure to give the amide. And fractions containing pyridazinone derivative were combined, and evaporated under reduced pressure to give pyridazinone derivative.
N-Ethylbenzamide (8a). Liquid. IR (KBr) 3350. 3100. 3000. 2950. 2900. 1650. 1620, 1560, 1500, 1460, 1390, 1370. 1320. 1060. 1120. $1040 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $1.89(\mathrm{t} .2 \mathrm{H}, J=7.3 \mathrm{~Hz}) .3 .42(\mathrm{q} .2 \mathrm{H}, J=7.1 .7 .0 \mathrm{~Hz}), 7.33(\mathrm{t}$, $2 \mathrm{H} . J=7.1 \mathrm{~Hz}), 7.43(\mathrm{t} .1 \mathrm{H}, J=7.3 \mathrm{~Hz}) .7 .49\left(\mathrm{~s} . \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 7.77 ppm (d. $2 \mathrm{H}, J=7.2 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.6 .35 .1 .127 .1$. 128.4, 131.4. 134.1. 168.2 ppm. Elemental analysis calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ON}: \mathrm{C} 72.46$. H 7.43. N 9.39; found C 72.56. H 7.38, N 9.43.

N -Cyclohexylbenzamide (8b). Liquid. IR (KBr) 3350.
1660. 1600, 1530. 1500, 1440. 1320. 1260, 750.720 .690 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.14-1.42(\mathrm{~m} .5 \mathrm{H}), 1.60(1.65(\mathrm{~m}$. $1 \mathrm{H}), 1.70-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~d}, 2 \mathrm{H} . J=12.0 \mathrm{~Hz}), 3.90-4.00$ (m, lH). 6.35 (D_O exchangeable), $7.35-7.48(\mathrm{~m} .3 \mathrm{H}), 7.76$ ppin (d, $2 \mathrm{H}, J=7.9 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.0,25.5$. 33.1, 48.7, 126.9, 128.4. 131.2, 135.1, 166.7 ppm . Elemental analysis calcd for $\mathrm{C}_{13} \mathrm{H}_{770} \mathrm{ON}$: C 76.81 . H 8.43, N 6.89 : found C 76.90, , H 8.49, N 6.82 .
N-Phenylbenzamide (8c). Mp 144-145 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{17} \mathrm{mp} 134$ $135^{\circ} \mathrm{C}$). IR (KBr) 3270. 3100. 2970, 2900, 1640, 1580. 1500. 1470. $1350,1320,1280.1100,720 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.15(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.36(\mathrm{t} .2 \mathrm{H} . J=8.3 \mathrm{~Hz})$. $7.44-7.54(\mathrm{~m} .3 \mathrm{H}) .7 .64(\mathrm{~d} .2 \mathrm{H} . J=7.6 \mathrm{~Hz}), 7.89(\mathrm{~d}, 2 \mathrm{H}, J=$ $6.9 \mathrm{~Hz}), 7.92 \mathrm{ppm}\left(\mathrm{s}, \mathrm{NH} . \mathrm{D}, \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 120.3,124.6$. 127.1, 128.8, 129.1. 131.8, 135.0. 137.9. 165.8 ppm . Elemental analysis calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ON}$: C 79.16. H 5.62, N 7.10. found C 79.09. H 5.68, 7.17.
N -Phenylethylbenzamide (8 d). Mp $118-120^{\circ} \mathrm{C}$ (lit. ${ }^{18} \mathrm{mp}$ $119-120^{\circ} \mathrm{C}$) IR (KBr) $3360,3070,3050,2950,1650,1610$, 1580. 1550. 1500, 1490.1460, 1320. 1300, 1200. 760.720 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.93(\mathrm{t}, 2 \mathrm{H} . J=6.9 \mathrm{~Hz}), 3.71(\mathrm{q}$. $2 \mathrm{H}, J=6.1,6.1 \mathrm{~Hz}) .6 .24$ (s. $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable).. $7.22-$ $7.26(\mathrm{~m}, 3 \mathrm{H}) .7 .30-7.42(\mathrm{~m}, 4 \mathrm{H}) .7 .47(\mathrm{t} .1 \mathrm{H}, J=7.2 \mathrm{~Hz})$. $7.79 \mathrm{ppm}(\mathrm{d} .2 \mathrm{H} . J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 35.7$. 41.2, 126.6. 126.8, 128.6. 128.7. 128.8, 131.4. 134.7, 138.9. 167.5 ppm. Elemental analysis calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ON}$: C 79.97. H 6.71, N 6.22 ; found C 80.06 , H 6.67. N 6.28.
S-Phenyl benzothiate (8e). Mp 63-65 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{19} \mathrm{mp}$ 64-66 ${ }^{\circ} \mathrm{C}$). IR (KBr) $3090,1740,1680.1600,1490,1440,1260$. 1200. 1180, 1060. 1040, 900. $760.690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.43-7.54(\mathrm{~m} .7 \mathrm{H}) .7 .60(\mathrm{t} .1 \mathrm{H}, J=7.3 \mathrm{~Hz}) .8 .03$ ppin (d. $2 \mathrm{H} . J=7.1 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 127.5 .128 .6$. 128.8. 129.3. 129.6, 130.2. 133.7, 135.1, 190.2 ppm. Elemental analysis calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{SO}$: C. 72.87. H 4.70: found C $72.95, \mathrm{H} 4.76$.
N-(4-Hydroxyphenyl)benzamide (8f). Mp $222-224^{\circ} \mathrm{C}$ (lit. ${ }^{20} \mathrm{mp} 223-225^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}) 3410.3350 .1660 .1620$. 1600. 1560. 1530. 1450, 1340. 1260, 1240, 1120. $840 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.27(\mathrm{t}, 2 \mathrm{H} . J=6.3 \mathrm{~Hz}) .3 .34(\mathrm{~s} . \mathrm{OH}$. $\mathrm{D}_{2} \mathrm{O}$ exchangeable). $3.84(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}) .7 .41(\mathrm{t} .2 \mathrm{H}, J=$ 7.4 Hz). 7.54 (t. $1 \mathrm{H} . J=7.5 \mathrm{~Hz}$). 7.95 ppm (d. $2 \mathrm{H} . J=7.1$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 31.7,61.6 .127 .3,128.6,133.6$. 136.8. 192.3 ppm . Elemental analysis calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}$: C 73.23 . H 5.20, N 6.57 : found C 73.31, H 5.24, N 6.62.
Typical procedure for synthesis of dipeptides. A solution of N-BOC-L-pheny lalanine (9. 2.5 mmol .1 equiv.). coupling agent 3 a ($3.75 \mathrm{mmol} .1: 5$ equiv:). triethy lamine (7.5 mmol .3 equiv.), O-methyl- α-aminocarbosylate hydrochloride 10 ($2.8 \mathrm{mmol}, 1.1$ equiv.) and methanol (30 mL) was stirred at room temperature until compound 9 disappeared by TLC monitoring. After filtering the mixture. the solvent was evaporated under reduced pressure. The resulting residue was applied to the top of an open-bed silica gel column ($3.5 \times 16 \mathrm{~cm}$). The column was eluted with ethyl acetate $/ n$-hexane ($1: 1 . \mathrm{v} / \mathrm{v}$). Fractions containing the dipeptide were combined. and evaporated under reduced pressure to give the peptide 11. And fractions containing
pyridazinone derivative were combined. and evaporated under reduced pressure to give pyridazinone derivative.
N-BOC-Phe-Leu-O-Me (11a). Mp 91-93 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}=$ $+42.85^{\circ}$. IR (KBr) 3345, 3340, 3100. 2990. 2900, 1760 , 1700. 1660. 1550. 1460. 1440, 1400, 1380, 1280, 1260, $1180 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \mathrm{d} 0.90(\mathrm{t}, 6 \mathrm{H} . J=5.6 \mathrm{~Hz})$, $1.41(\mathrm{~s}, 9 \mathrm{H}), 1.44-1.61(\mathrm{~m} .3 \mathrm{H}) .3 .07(\mathrm{~d} .2 \mathrm{H} . J=6.7 \mathrm{~Hz})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 4.35(\mathrm{~d} .1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.53-4.61(\mathrm{~m}, \mathrm{lH})$, 5.02 (bs, NH. D2O exchangeable). 6.29 (d, NH. D2O exchangeable). $7.20-7.32 \mathrm{ppm}(\mathrm{m} .5 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 21.7,22.7,24.5$. 28.2. 38.1. 41.5, 50.7. 52.2. 80.2. 126.9. 128.6, 129.4. 136.6. 155.4, 171.0, 172.8 ppm . Elemental analysis calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$: C 64.26, H 8.22. N 7.14: found C 64.33. H 8.29, N 7.21.
N-BOC-Phe-Phe- O-Me (11b). Mp 119-121 ${ }^{\circ} \mathrm{C} .\left[\alpha_{\mathrm{D}}=\right.$ -7.10°. IR (KBr) $3350.3340,3080,3050.3000 .1750,1700$. 1670. 1530. 1500. 1450. 1390, 1370, 1350, 1300, 1250 , 1220. 1170. 1040. 1020. 1010, $860.750,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.39(\mathrm{~s} .9 \mathrm{H}) .2 .98-3.09(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, 4.33 (s. NH. D2O exchangeable), 4.78 (q. IH. $J=6.9 .6 .1$ Hz), 5.00 (s. NH. D2 O exchangeable). 6.37 (d, 1H. $J=7.4$ $\mathrm{Hz}), 6.97-7.00(\mathrm{~m}, 2 \mathrm{H}) .7 .17-7.31 \mathrm{ppm}(\mathrm{m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 28.2,38.0 .38 .3 .52 .3 .53 .3 .55 .7,80.2,127.0$, 127.1, 128.7. 129.2. 129.4. 135.7. 136.6, 155.3, 170.8, 171.4 ppm. Elemental analysis calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C} 67.59$. H 7.90. N 6.57: found C 67.69. H 7.84, N 6.61 .
N-BOC-Phe-Tip- O-Me (11c). Mp $160-162{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}=$ -8.30°. IR (KBr) $3420.3400,3280,1750.1690 .1670,1520$. 1490. 1450, 1440, 1300. 1240. 1160, $640 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.34(\mathrm{~s}, 9 \mathrm{H}) .3 .02(\mathrm{~m} .2 \mathrm{H}) .3 .23(\mathrm{~m} .2 \mathrm{H}), 3.59(\mathrm{~s}$, $3 \mathrm{H}) .4 .37$ (s. NH. $\mathrm{D}_{2} \mathrm{O}$ exchangeable), 4.86 (q. $\mathrm{IH} . J=7.4$ $\mathrm{Hz}) .5 .04(\mathrm{~d}, 1 \mathrm{H} . J=7.9 \mathrm{~Hz}), 6.54(\mathrm{~d}, 1 \mathrm{H} . J=7.8 \mathrm{~Hz}), 6.84$ (d. IH. $J=7.4 \mathrm{~Hz}$). $7.04(\mathrm{t}, 1 \mathrm{H} . J=7.5 \mathrm{~Hz}), 7.12-7.30(\mathrm{~m}$, 7 H). 7.36 (d, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable). 8.50 ppm (s. NH , $\mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 27.7 .28 .2$. 38.4, $52.3,53.1$. 60.4, 80.1. 109.5. 111.4, 118.4, 119.5, 122.1, 123.1. 126.9, 127.5. 128.6, 129.4. 136.2, 136.6. 155.3, 171.0. 171.9 ppm . Elemental analysis calcd. for $\mathrm{C}_{36} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{5}: \mathrm{C}$ 67.08. H 6.71. N 9.03: found C 67.17. H 6.79. N 8.97.

Acknowledgments. This work was supported by a grant from the Korea Science and Engineering Foundation (KOSEF) to the Environmental Biotechnology National Core Research Center (grant \#: R15-2003-012-02001-0).

References

1. (a) Greene. I. W.: Wuts. P. G. M. Protective Groups im Organic Smhesis: Wiley: New York. 1999. pp 494-564. (b) Mulzer. J. In Comprehensive Organic Sinhesis. Trost. B. M.: Fleming. I. Eds.: Pergamon: Ovford, 1991: Vol. 6. pp 322-417.
2. Vogel, A. Practical Organic Chemistry Longman Scientific \& Technical and Wiley: New York. 1989; pp 708-710
3. Smith. M. B.: March. T. March's Advanced Organic Chemistry. $5^{\text {th }}$ ed.: Wiley: New York. 2001: pp 506-512.
4. For selected examples: (a) Kang. Y. T.: Chung. H. A.: Kimn. T. J.: Yoon. Y. J. Syuthesis 2002, 733. (b) Wakasugi. K.: Nakamura. A.; Tanabe, Y. Tetrahedron Lett. 2001. 42. 7427. (c) Katrizky, A. R; He. H.-Y.', Suzuki. K. J. Org. Chem. 2000. 65, 8210 . (d) Kondo.
K.: Sekimoto. E.: Nakao. J.: Murakami. Y. Tetrohedron 2000. 56. 5843. (e) Yasuhara. T.: Nagaoka. Y.: Tomioka. K. J. Chem. Soc.. Perkin Trans. 1 1999. 2233. (t) Blagbrough. I. S.: Geall. A. J. Tetrahedron Lett. 1998. 39. 439. (g) Kartrizky. A. R.' Yang. B.: Semenzin, D. J. Org. Chem. 1997, 62, 726. (h) Kartrizky, A. R.: Chang, H. X. Sumhesis 1995, 503 . (i) Murahashi, S.-I:: Naota, T. Swhthesis 1993. 433. (j) Akikusa. N.: Mitsui. K.: Sakamoto. T.: Kikugawa. Y. Synthesis 1992. 1058. (k) Kikukawa. Y.: Mitsui. K.: Sakamoto. T.: Kawase. M.: Tamiya. H. Tetrahedorn Lett. 1990. 31, 243. (1) Murahashi, S.-I.; Naota. T.; Nakajima. N. Chem. Lett. 1987, 879. (m) Murahashi. S.-I.; Naota, T.; Saito, E. J. Am. Chem. Soc. 1986. 108. 7846. (n) Atwell, G. L.: Denny. W. A. Symhesis 1984. 1032 (o) Staab. H. A.: Walther. G. Angew: Chem. 1960. 72. 35.
5. Kim. J. J.: Park. Y. D.: Lee. W. S.: Cho. S. D.: Yoon. Y. J. Smhthesis 2003, 1517.
6. Kim, J. J.: Park. Y. D.: Kweon. D. H.: Kang. Y. J.: Kim, H. K.: Lee, S. G.; Cho, S. D.: Lee. W. S.; Yoon. Y. I. Bull. Kor: Chem. 2004. 25.501.
7. Lee. S. G.: Kim. J. J.: Kim. H. K.: Kweon. D. H.: Kang. Y. J.: Cho. S. D.: Kim. S. K.: Yoon. Y. J. Cury Org. Chem. 2004. 8. 1463.
8. Won. J. E.: Kim. H. K.: Kim. J. J.: Yim, H. S.: Kim, M. J.: Kang. S. B.; Chung. H. A: Lee, S. G.; Yoon, Y. J. Tetrahedron 2007, 63.
9.
10. (a) Chung. H. A.: Kweon. D. H.: Kang. Y. T.: Park. T. W.: Yoon. Y. J. J. Heterocvic Chent. 1999. 36. 905 . (b) Cho. S. D.: Choi. W. Y.: Yoon. Y. J. J. Heterocychic Chem. 1996, 33, 1579.
11. Zacuto, M. J.: Xu. F. J. Org. Chem. 2007, 72(16). 6298.
12. Liley, M. J.; Johnson, T: Gibson. S. E. J. Org. Chem. 2006, 71 (4). 1322.
13. Fairfull-Smith. K. E.: Tenkins. I. D.: Loughlin. W. A. Org. \& Bionol. Chem. 2004. 2(14). 1979.
14. Wang, X:; Widenhoefer, R. A. Organometallics 2004. $23(8)$. 1649 .
15. Shaabani, A.: Solemani, E.: Rezayan, A. H. Terahedron Lett. 2007. $+8(35) .6137$.
16. Wu. X.: Ekegren. J. K.: Larhed. M. Orgnontetallics 2006. 25(6). 1434.
17. Gertzmann, R.: Guertler. C. Tetrahedron Lett. 2005, 16(39). 6659.
18. Khan. M. W.: Reza, A. F. G. M. Tetrahedron 2005, $61(47)$. 11204.
19. Ruan. Z.: Lawrence. R. M.: Cooper, C. B. Tetrahedron Lett. 2006. 47(43). 7649 .
20. Bandgar. S. B.: Bandgar. B. P.: Korbad. B. L.: Sawant. S. S. Terrahedron Letl 2007. +8(7). 1287.
21. Kumar. A.: Narasimhan, B.; Kumar, D. Bioorg. \& ifed. Chem. 2007. $15(12), 413$.
