참고문헌
- Havsteen, B. H. Pharmacol. Therapeut. 2002, 96, 67 https://doi.org/10.1016/S0163-7258(02)00298-X
- Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Free Radic Biol. Med. 1996, 20, 933 https://doi.org/10.1016/0891-5849(95)02227-9
- Kim, H.; Jeong, K.; Jung, S. Bull. Korean Chem. Soc. 2006, 27, 325 https://doi.org/10.5012/bkcs.2006.27.2.325
- Lin, J. K.; Tsai, S. H.; Lin, S. Y. Drug. Future 2001, 26, 145 https://doi.org/10.1358/dof.2001.026.02.858703
- Birt, D. F.; Hendrich, S.; Wang, W. Pharmacol. Ther. 2001, 90, 157 https://doi.org/10.1016/S0163-7258(01)00137-1
- Bae, E. A.; Han, M. J.; Lee, M.; Kim, D. H. Biol. Pharm. Bull. 2000, 12, 1122
- Saenger, W. Angew. Chem. Int. Ed. Engl. 1980, 19, 344 https://doi.org/10.1002/anie.198003441
- Ali, S. M.; Asmat, F.; Koketsu, M. Bull. Korean Chem. Soc. 2006, 27, 1397 https://doi.org/10.5012/bkcs.2006.27.9.1397
- Khan, A. R.; Forgo, P.; Stine, K. J.; D'Souza, V. T. Chem. Rev. 1998, 98, 1977 https://doi.org/10.1021/cr970012b
- Higuchi, T.; Connors, K. A. Adv. Anal. Chem. Instr. 1965, 4, 117
- Mura, P.; Bettinetii, G.; Melani, F.; Manderioli, A. Eur. J. Pharm. Sci. 1995, 3, 347 https://doi.org/10.1016/0928-0987(95)00025-X
- Hyunmyung, K.; Karpjoo, J.; Hyungwo, P.; Seunho, J. J. Incl. Phenom. Macrocycl. Chem. 2006, 27, 281
- Choi, Y.; Park, S.; Jeong, K.; Jung, S. Bull. Korean Chem. Soc. 2007, 28, 1811 https://doi.org/10.5012/bkcs.2007.28.10.1811
- Davis, M. E.; Brewster, M. E. Nat. Rev. Drug Disc. 2004, 3, 1023 https://doi.org/10.1038/nrd1576
- Schneider, H.-J.; Hacket, F.; Rudiger, V.; Ikeda, H. Chem. Rev. 1998, 98, 1755 https://doi.org/10.1021/cr970019t
- Aree, T.; Chaichit, N. Carbohydr. Res. 2002, 337, 2487 https://doi.org/10.1016/S0008-6215(02)00335-X
- Garcia-Rio, L.; Herves, P.; Leis, J. R.; Mejuto, J. C.; Perez-Juste, J.; Rodriquez-Dafonte, P. Org. Biomol. Chem. 2006, 4, 1038 https://doi.org/10.1039/b513214b
- Zheng, Y.; Haworth, I. S.; Zuo, Z.; Chow, M. S. S.; Chow, A. H. L. J. Pharm. Sci. 2005, 94, 1079 https://doi.org/10.1002/jps.20325
- Junquera, E.; Ruiz, D.; Aicart, E. J. Colloid Interface Sci. 1999, 216, 154 https://doi.org/10.1006/jcis.1999.6290
- Matsui, T.; Iwasaki, H.; Matsumoto, K.; Osajima, Y. Biosci. Biotech. Biochem. 1994, 58, 1102 https://doi.org/10.1271/bbb.58.1102
피인용 문헌
- Interaction of Curculigosides and Their β-Cyclodextrin Complexes with Bovine Serum Albumin: A Fluorescence Spectroscopic Study vol.40, pp.10, 2011, https://doi.org/10.1007/s10953-011-9750-y
- Synthesis of 7-O-(2-Amino)ethyl Flavones and Their Antioxidant Activities vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1773
- Improvement of dissolution behavior of poorly water soluble drugs by biodegradable polymeric submicron carriers containing sparingly methylated β-cyclodextrin vol.24, pp.4, 2013, https://doi.org/10.1007/s10856-013-4866-9
- Solubility of Chrysin in Ethanol and Water Mixtures vol.59, pp.7, 2014, https://doi.org/10.1021/je5001654
- Characterization of the Supermolecular Structure of Polydatin/6-O-α-Maltosyl-β-cyclodextrin Inclusion Complex vol.80, pp.6, 2015, https://doi.org/10.1111/1750-3841.12845
- Antiatherogenic Roles of Dietary Flavonoids Chrysin, Quercetin, and Luteolin vol.68, pp.1, 2016, https://doi.org/10.1097/FJC.0000000000000380
- Host–Guest Inclusion System of Luteolin with Polyamine-β-cyclodextrin: Preparation, Characterisation, Anti-oxidant and Anti-cancer Activity vol.69, pp.2, 2016, https://doi.org/10.1071/CH15194
- Development and In Vitro Evaluation of an Innovative “Dietary Flavonoid Supplement” on Osteoarthritis Process vol.2017, pp.1942-0994, 2017, https://doi.org/10.1155/2017/7503240
- Effects of inclusion of chrysin in cucurbit[8]uril on its stability, solubility and antioxidant potential vol.33, pp.5, 2017, https://doi.org/10.1007/s40242-017-7096-8
- Solubility and dissolution rate improvement of the inclusion complex of apigenin with 2-hydroxypropyl-β-cyclodextrin prepared using the liquid antisolvent precipitation and solvent removal combination methods vol.43, pp.8, 2017, https://doi.org/10.1080/03639045.2017.1318900
- SERS-Based Flavonoid Detection Using Ethylenediamine-β-Cyclodextrin as a Capturing Ligand vol.7, pp.1, 2017, https://doi.org/10.3390/nano7010008
- Supramolecular Encapsulation of Pulegone from Oriental Herb, Schizonepeta tenuifolia Briquet by β- and γ-Cyclodextrins vol.29, pp.8, 2008, https://doi.org/10.5012/bkcs.2008.29.8.1579
- Novel Acetylated Linear Periplasmic Glucans Isolated from Pseudomonas syringae vol.30, pp.10, 2008, https://doi.org/10.5012/bkcs.2009.30.10.2433
- Molecular Modeling Studies on the Chiral Separation of (±)-Catechins by Mono-succinyl-β-cyclodextrin vol.30, pp.6, 2008, https://doi.org/10.5012/bkcs.2009.30.6.1373
- Spectroscopic characterization of the inclusion complexes of luteolin with native and derivatized β-cyclodextrin vol.18, pp.14, 2008, https://doi.org/10.1016/j.bmc.2010.05.079
- Inclusion of chrysin in β-cyclodextrin nanocavity and its effect on antioxidant potential of chrysin: A spectroscopic and molecular modeling approach vol.977, pp.1, 2010, https://doi.org/10.1016/j.molstruc.2010.05.030
- Preparation and characterization of monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) micelles for the solubilization and in vivo delivery of luteolin vol.8, pp.None, 2008, https://doi.org/10.2147/ijn.s45062
- Cyclodextrins in Food Technology and Human Nutrition: Benefits and Limitations vol.56, pp.12, 2008, https://doi.org/10.1080/10408398.2013.809513
- Inclusion complex of chrysin with sulfobutyl ether-β-cyclodextrin (Captisol®): Preparation, characterization, molecular modelling and in vitro anticancer activity vol.1128, pp.None, 2008, https://doi.org/10.1016/j.molstruc.2016.09.025
- Mono-6-Deoxy-6-Aminopropylamino-β-Cyclodextrin on Ag-Embedded SiO2 Nanoparticle as a Selectively Capturing Ligand to Flavonoids vol.9, pp.10, 2008, https://doi.org/10.3390/nano9101349