DOI QR코드

DOI QR Code

Alkali Metal Ion Catalysis in Nucleophilic Substitution Reactions of 5-Nitro-8-quinolyl Benzoate with Alkali Metal Ethoxides in Anhydrous Ethanol: Unusually High Na+ Ion Selectivity

  • Um, Ik-Hwan (Division of Nano Sciences and Department of Chemistry, Ewha Womans University) ;
  • Lee, Seung-Eun (Advanced PKG Development Central R & D Institute,Sumsung Electro-Mechanics) ;
  • Hong, Yeon-Ju (Amorepacific Corporation R & D Center) ;
  • Park, Jee-Eun (Division of Nano Sciences and Department of Chemistry, Ewha Womans University)
  • 발행 : 2008.01.20

초록

Pseudo-first-order rate constants (kobsd) have been measured spectrophotometrically for nucleophilic substitution reactions of 5-nitro-8-quinolyl benzoate (5) with alkali metal ethoxides, EtO?M+ (M+ = Li+, Na+ and K+) in anhydrous ethanol (EtOH) at 25.0 0.1 C. The plots of kobsd vs. [EtO?M+] exhibit upward curvatures, while the corresponding plots for the reactions of 5 with EtO?Na+ and EtO?K+ in the presence of complexing agents, 15-crown-5-ether and 18-crown-6-ether are linear with rate retardation. The reactions of 5 with EtO?Na+ and EtO?Li+ result in significant rate enhancements on additions of Na+ClO4, indicating that the M+ ions behave as a catalyst. The dissociated EtO and ion-paired EtOM+ have been proposed to react with 5. The second-order rate constants for the reactions with EtO (kEtO) and EtOM+ (kEtOM+) have been calculated from ion-pairing treatments. The kEtO and kEtOM+ values decrease in the order kEtONa+ > kEtOK+ > kEtOLi+ > kEtO, indicating that ion-paired EtOM+ species are more reactive than the dissociated EtO ion, and Na+ ion exhibits the largest catalytic effect. The M+ ions in this study form stronger complex with the transition state than with the ground state. Coordination of the M+ ions with the O and N atoms in the leaving group of 5 has been suggested to be responsible for the catalytic effect shown by the alkali metal ions in this study.

키워드

참고문헌

  1. Jencks W. P. Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, 1969
  2. Jencks, W. P. Chem. Rev. 1985, 85, 511-527 https://doi.org/10.1021/cr00070a001
  3. Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345-375 https://doi.org/10.1039/cs9811000345
  4. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Harlow, U.K., 1997; Chapter 7
  5. Cleland, W. W.; Hengge, A. C. Chem. Rev. 2006, 106, 3252-3278 https://doi.org/10.1021/cr050287o
  6. Hengge, A. C. Adv. Phys. Org. Chem. 2005, 40, 49-108 https://doi.org/10.1016/S0065-3160(05)40002-7
  7. Hengge, A. C.; Onyido, I. Curr. Org. Chem. 2005, 9, 61-74 https://doi.org/10.2174/1385272053369349
  8. Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890-1895 https://doi.org/10.1021/ja00214a037
  9. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524 https://doi.org/10.1021/cr990001d
  10. Castro, E. A.; Aliaga, M.; Gazitua, M.; Santos, J. G. Tetrahedron 2006, 62, 4863-4869 https://doi.org/10.1016/j.tet.2006.03.013
  11. Castro, E. A.; Campodonico, P. R.; Contreras, R.; Fuentealba, P.; Santos, J. G.; Leis, J. R.; Garcia-Rio, L.; Saez, J. A.; Domingo, L. R. Tetrahedron 2006, 62, 2555-2562 https://doi.org/10.1016/j.tet.2005.12.044
  12. Castro, E. A.; Aliaga, M.; Campodonico, P. R.; Leis, J. R.; Garcia-Rio, Luis; Santos, J. G. J. Phys. Org. Chem. 2006, 19, 683-688 https://doi.org/10.1002/poc.1116
  13. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092 https://doi.org/10.1021/jo051168b
  14. Campodonico, P. R.; Fuentealba, P.; Castro, E. A.; Santos, J. G.; Contreras, R. J. Org. Chem. 2005, 70, 1754-1760 https://doi.org/10.1021/jo048127k
  15. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791 https://doi.org/10.1021/jo051052f
  16. Sung, D. D.; Koo, I. S.; Yang, K. Y.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430 https://doi.org/10.1016/j.cplett.2006.11.002
  17. Sung, D. D.; Koo, I. S.; Yang, K. Y.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284 https://doi.org/10.1016/j.cplett.2006.06.015
  18. Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244 https://doi.org/10.1039/b500251f
  19. Park, Y. H.; Lee, O. S.; Koo, I. S.; Yang, K. Y.; Lee, I. Bull. Korean Chem. Soc. 2006, 27, 1865-1868 https://doi.org/10.5012/bkcs.2006.27.11.1865
  20. Hwang, J. Y.; Yang, K. Y.; Koo, I. S.; Sung, D. D.; Lee, I. Bull. Korean Chem. Soc. 2006, 27, 733-738 https://doi.org/10.5012/bkcs.2006.27.5.733
  21. Sung, D. D.; Kang, S. S.; Lee, J. P.; Jung, D. I.; Ryu, Z. H.; Lee, I. Bull. Korean Chem. Soc. 2007, 28, 1670- 1674 https://doi.org/10.5012/bkcs.2007.28.10.1670
  22. Hougue, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797- 1802 https://doi.org/10.5012/bkcs.2007.28.10.1797
  23. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829 https://doi.org/10.1021/jo070171n
  24. Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821 https://doi.org/10.1021/jo0705061
  25. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720 https://doi.org/10.1021/jo061308x
  26. Um, I. H.; Kim, E. Y.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306 https://doi.org/10.1021/jo052417z
  27. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org.Chem. 2006, 71, 9191-9197 https://doi.org/10.1021/jo061682x
  28. Um, I. H.; Lee, J. Y.; Lee, H. W.; Nagano, Y.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987 https://doi.org/10.1021/jo050172k
  29. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444 https://doi.org/10.1021/jo048227q
  30. Um, I. H.; Chun, S. M.; Bae, S. K. Bull. Korean Chem. Soc. 2005, 26, 457- 460 https://doi.org/10.5012/bkcs.2005.26.3.457
  31. Ku, M. H.; Oh, H. K.; Ko, S. Bull. Korean Chem. Soc. 2007, 28, 1217-1220 https://doi.org/10.5012/bkcs.2007.28.7.1217
  32. Jeong, K. S.; Oh, H. K. Bull. Korean Chem. Soc. 2007, 28, 485-488 https://doi.org/10.5012/bkcs.2007.28.3.485
  33. Oh, H. K.; Ku, M. H. Bull. Korean Chem. Soc. 2006, 27, 1873-1876 https://doi.org/10.5012/bkcs.2006.27.11.1873
  34. Oh, H. K.; Oh, J. Y. Bull. Korean Chem. Soc. 2005, 27, 143-146
  35. Fife, T. H.; Chauffe, L. Bioorg. Chem. 2000, 28, 357-373 https://doi.org/10.1006/bioo.2000.1176
  36. Fife, T. H.; Bembi, R. J. Am. Chem. Soc. 1993, 115, 11358-11363 https://doi.org/10.1021/ja00077a039
  37. Fife, T. H.; Pujari, M. P. J. Am. Chem. Soc. 1990, 112, 5551- 5557 https://doi.org/10.1021/ja00170a020
  38. Suh, J.; Son, S. J.; Suh, M. P. Inorg. Chem. 1998, 37, 4872- 4877 https://doi.org/10.1021/ic980205x
  39. Suh, J.; Kim, N.; Cho, H. S. Bioorg. Med. Chem. Lett. 1994, 4, 1889-1892 https://doi.org/10.1016/S0960-894X(01)80391-7
  40. Tsang, J. S.; Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc. 2003, 125, 7602-7607 https://doi.org/10.1021/ja034979a
  41. Tsang, J. S. W.; Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc. 2003, 125, 1559-1566 https://doi.org/10.1021/ja021176z
  42. Gibson, G. T. T.; Neverov, A. A.; Teng, A. C.-T.; Brown, R. S. Can. J. Chem. 2005, 83, 1268-1276 https://doi.org/10.1139/v05-065
  43. Tsang, J. S. W.; Neverov, A. A.; Brown, R. S. Org. Biomol. Chem. 2004, 2, 3457-3463 https://doi.org/10.1039/b412132e
  44. Buncel, E.; Dunn, E. J.; Bannard, R. B.; Purdon, J. G. Chem. Commun. 1984, 162-163
  45. Dunn, E. J.; Buncel, E. Can. J. Chem. 1989, 67, 1440-1448 https://doi.org/10.1139/v89-220
  46. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2005, 3, 1468-1475 https://doi.org/10.1039/b501537e
  47. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601- 610 https://doi.org/10.1039/b314886f
  48. Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Org. Biomol. Chem. 2003, 1, 163-167 https://doi.org/10.1039/b208408b
  49. Buncel, E.; Nagelkerke, R.; Thatcher, G. R. J. Can. J. Chem. 2003, 81, 53-63 https://doi.org/10.1139/v02-202
  50. Pregel, M. J.; Dunn, E. J.; Buncel, E. J. Am. Chem. Soc. 1991, 113, 3545-3550 https://doi.org/10.1021/ja00009a049
  51. Pregel, M. J.; Buncel, E. J. Org. Chem. 1991, 56, 5583-5588 https://doi.org/10.1021/jo00019a022
  52. Pregel, M. J.; Dunn, E. J.; Buncel, E. Can. J. Chem. 1990, 68, 1846-1858 https://doi.org/10.1139/v90-287
  53. Buncel, E.; Pregel, M. J. J. Chem. Soc., Chem. Commun. 1989, 1566-1567
  54. Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016-3017
  55. Um, I. H.; Shin, Y. H.; Lee, S. E.; Yang, K.; Buncel, E. J. Org. Chem. 2008, 73, in press
  56. Kwon, D. S.; Park, H. S.; Um, I. H. Bull. Korean Chem. Soc. 1991, 12, 93-97
  57. Kwon, D. S.; Nahm, J. H.; Um, I. H. Bull. Korean Chem. Soc. 1994, 15, 654-658
  58. Um, I. H.; Nahm, J. H.; Lee, Y. J.; Kwon, D. S. Bull. Korean Chem. Soc. 1996, 17, 840- 845
  59. Um, I. H.; Hong, Y. J.; Lee, Y. J. Bull. Korean Chem. Soc. 1998, 19, 147-150
  60. Pechanec, V.; Kocian, O.; Zavada, J. Collect. Czech. Chem. Commun. 1982, 47, 3405-3411 https://doi.org/10.1135/cccc19823405
  61. Barthel, J.; Justice, J.-C.; Wachter, R. Z. Phys. Chem. 1973, 84, 100-113
  62. Kurz, J. L. J. Am. Chem. Soc. 1963, 85, 987-991 https://doi.org/10.1021/ja00890a035
  63. Cacciapaglia, R.; Mandolini, L. Chem. Soc. Rev. 1993, 22, 221-231 https://doi.org/10.1039/cs9932200221
  64. Tee, O. S. Adv. Phys. Org. Chem. 1994, 29, 1-85 https://doi.org/10.1016/S0065-3160(08)60075-1

피인용 문헌

  1. Alkali-Metal Ion Catalysis in Nucleophilic Substitution Reactions of 5-Nitro-8-quinolyl Picolinate with Alkali Metal Ethoxides: Effect of Modification of Nonleaving Group from Benzoyl to Picolinyl on Reactivity and Transition State Structure vol.35, pp.5, 2014, https://doi.org/10.5012/bkcs.2014.35.5.1506
  2. Metal Ion Catalysis in Nucleophilic Displacement Reactions of 2-Pyridyl X-Substituted Benzoates with Potassium Ethoxide in Anhydrous Ethanol vol.31, pp.12, 2008, https://doi.org/10.5012/bkcs.2010.31.12.3543
  3. Effect of Alkali Metal Ions on Nucleophilic Substitution Reactions of 4-Nitrophenyl X-Substituted Benzoates with Alkali Metal Ethoxides in Anhydrous Ethanol vol.31, pp.2, 2008, https://doi.org/10.5012/bkcs.2010.31.02.303
  4. Metal Ion Catalysis in Nucleophilic Substitution Reaction of 4-Nitrophenyl Picolinate with Alkali Metal Ethoxides in Anhydrous Ethanol vol.31, pp.9, 2010, https://doi.org/10.5012/bkcs.2010.31.9.2483
  5. Effect of Alkali Metal Ions on Alkaline Ethanolysis of 2-Pyridyl and 4-Pyridyl Benzoates in Anhydrous Ethanol vol.31, pp.10, 2008, https://doi.org/10.5012/bkcs.2010.31.10.2929
  6. Kinetic and Theoretical Studies on Alkaline Ethanolysis of 4‐Nitrophenyl Salicylate: Effect of Alkali Metal Ions on Reactivity and Mechanism vol.17, pp.10, 2008, https://doi.org/10.1002/chem.201002692
  7. Alkali Metal Ion Catalysis and Inhibition in Nucleophilic Substitution Reactions of 3,4-Dinitrophenyl Diphenylphosphinothioate with Alkali Metal Ethoxides in Anhydrous Ethanol: Effect of Changing Elec vol.32, pp.7, 2008, https://doi.org/10.5012/bkcs.2011.32.7.2423
  8. K+ Ion Catalysis in Nucleophilic Displacement Reaction of Y-Substituted-Phenyl Picolinates with Potassium Ethoxide: Effect of Substituent Y on Reactivity and Transition State Structure vol.35, pp.6, 2008, https://doi.org/10.5012/bkcs.2014.35.6.1749
  9. Kinetic Study on Nucleophilic Substitution Reaction of 5-Nitro-8-quinolyl Benzoate, Picolinate, Nicotinate and Isonicotinate with Alkali Metal Ethoxide: Effect of Nonleaving Group on Reactivity and Tr vol.35, pp.6, 2008, https://doi.org/10.5012/bkcs.2014.35.6.1789