Expedient Synthesis of 3-Benzoylflavones by PCC Oxidation of 3-Benzylideneflavanones

Se Hee Kim, Sung Hwan Kim, and Jae Nyoung Kim*
Department of Chemistry and Instifute of Basic Science, Chonnam National Universit, Gwangiu 500-757, Korea
E-mall: himjn@chonnam.ac.kr

Received July 29, 2008
Key Words: Baylis-Hillman adducts, Flavanones, PCC, Flavones

The synthesis and chemical transformation of 3-arylideneflavanones (3-arylidenechroman-4-ones) and related compounds received much attention due to the abundance of this moiety in many natural products and biologically active substances. ${ }^{1.3}$ Many 3-arylideneflavanones showed interesting biological activities including anti-HIV, anti-mutagenic, anti-inflammatory, anti-bacterial, anti-fungal and antiviral activities. ${ }^{1-3}$ In addition, oxidation of 3 -arylideneflavanones into 3 -aroylflavones (3-aroylchromones) ${ }^{3}$ is also regarded as an important transformation in this respect.
In this paper, we described the synthesis of various 3benzylideneflavanones 6 and the following oxidation with pyridinium chlorochromate (PCC) to make the corresponding 3-benzoylflavones 7 (Scheme 1 and Table 1). The synthesis of 3 -arylideneflavanones 6 was carried out by following the method of Basavaiah ${ }^{\text {1c }}$ from the Baylis-Hillman adducts ${ }^{1,5}$ via the following three-step sequence comprised of (i) introduction of phenol at the primary position of the Baylis-Hillman adduct, (ii) hydrolysis of the ester group and (iii) Friedel-Crafts type cyclization. ${ }^{1 \mathrm{~b}-\mathrm{d}}$

The starting material 4 a was synthesized in pure E-form in good yield (94%) by the reaction of phenol (3a) and the cinnamyl bromide $2,{ }^{10-d, 4}$ which was easily prepared from 1 and HBr , under the influence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetone. Hydrolysis of 4 a was carried out in aqueous KOH to produce the corresponding acid 5a. Without further purification, treatment of 5a with trifluoroacetic anhydride (TFAA) produced 3-benzylideneflavanone $6 \mathbf{a}$ in 90% yield. ${ }^{\text {15 }}$ With this compound in our hand we examined the oxidation of $6 a$ with PCC which was found as an effective oxidant in a similar system by us recently. ${ }^{6}$ As expected, treatment of 6 a with

PCC (5.0 equiv) in DMF afforded 3-benzoylflavone 7a ${ }^{3.7}$ in moderate yield (56%), although long reaction time (72 h) was required for the oxidation.

Encouraged by the results we prepared starting materials $\mathbf{4 b - g}(80-91 \%)$ from the reactions of 2 and 4-methylphenol (3b), 2-methylphenol (3c), 4-methoxyphenol (3d), 3,5dimethylphenol (3e), 1-naphthol (3f), and 2-naphthol (3g). By following the same procedure of 6 a we synthesized various 3 -benzylidenetlavanones $\mathbf{6 b - g}$ as summarized in Table 1. As shown in entry 7, the cyclization reaction of compound 4 g occurred at the 1 -position of naphthalene moiety selectively and produced $\mathbf{6 g}$. PCC oxidation of $\mathbf{6 b}-\mathrm{g}$ was also carried out and desired 3-benzoyltlavones $7 \mathrm{~b}-\mathrm{g}$ were prepared in $\mathbf{4 6 - 7 0 \%}$ yields. Similarly, we synthesized nitrogen analog 8 with N-tosylaniline as in Scheme 2 . Compound 9 was synthesized by using the same protocol of $6 \mathrm{a}-\mathrm{g}$, however, the oxidation of 9 was failed. Double bond isomerization of 6 a from the exo- to the endo-position was also examined (Scheme 3). Initially, we tried the isomerization under catalytic hydrogenation conditions ${ }^{8 a-c}$ and obtained desired compound 3-benzylflavone (10) ${ }^{86}$ in low yield (37%) due to the formation of fully reduction compound $11(32 \%) .{ }^{86}$ In addition, the ratio of $\mathbf{1 0 / 1 1}$ was highly dependent on the reaction conditions and it was difficult to make 10 as the major product. After many trials, we found that $\mathbf{1 0}$ can be prepared from 6 a in good yield (71%) under the influence of $\mathrm{DBU}\left(1.2\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}\left(40^{\circ} \mathrm{C}, 12 \mathrm{~h}\right)$.
In summary, we disclosed a facile synthesis of 3-benzylideneflavanones and 3-benzoylflavones from Baylis-Hillman adducts. The biological activities of synthesized compounds will be examined and published in due course.

Scheme 1

Table 1. Synthesis of 3-benzylideneflavanones and 3-benzoylflavones
Entry
"First yields refer to hydrolysis stage to compounds $\mathbf{5 a - g}$ and the second yields to cyclization step to $6 \mathbf{6 a - g}$. ${ }^{\text {.T }}$ The structure was confirmed by the splitting pattern of aromatic protons in ${ }^{\prime} \mathrm{H}$ NMR (Experimental)

Scheme 2

Scheme 3

Experimental Section

Typical procedure for the synthesis of 4a. Baylis-Hillman adduct 1 (384 mg .2 .0 mmol) was treated with aqueous HBr
$(48 \%, 2.0 \mathrm{~mL})$ at room temperature for 30 min . After the usual extractive workup with ether and column chromatographic purification (hexanes/EtOAc, 8:1) process, cinnamyl bromide 2 was obtained as colorless oil, 485 mg (95%).

The reaction mixture of 2 ($255 \mathrm{mg}, 1.0 \mathrm{mmol}$), phenol (3a, $104 \mathrm{mg}, 1.1 \mathrm{mmol}$, and $\mathrm{K}_{2} \mathrm{CO}_{;}$($207 \mathrm{mg}, 1.5 \mathrm{mmol}$) in acetone (5 mL) was heated to reflux for 3 h . After the usual extractive workup with ether and column chromatographic purification (hexanes/EtOAc, 5:1) process, compound 4a was obtained as colorless oil, $252 \mathrm{mg}(94 \%)$. Other products including 8 were prepared analogously and the spectroscopic data of $\mathbf{4 c}, 4 \mathrm{~d}, 4 \mathrm{f}, 4 \mathrm{~g}$, and 8 are as follows. Compounds $\mathbf{4 a},{ }^{l \mathrm{i}} \mathbf{4} \mathbf{b},{ }^{9,{ }^{9 / 4}}$ and $\mathbf{4}{ }^{\text {ed }}$ were known.
Compound 4c: 91%; colorless oil; IR (film) 1718, 1495. $1234,1117 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.22$ (s, $3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 6.87-6.91(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.17$ $(\mathrm{m}, 2 \mathrm{H}), 7.35-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.51(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }^{2}, 75 \mathrm{MHz}\right) \delta 16.27,52.22,62.89,111.80$, $120.79,126.74,127.33,127.59 .128 .66,129.51,129.69$. $130.68,134.52,145.32,156.68,167.77$.

Compound 4d: 89\%; colorless oil; IR (film) 1718, 1508. $1225 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=9.0 \mathrm{~Hz} .2 \mathrm{H}), 6.92(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.50(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{~s}$. $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 52.24,55.66,63.52$, $114.60,116.09 .127 .44 .128 .65,129.53,129.74,134.43$. $145.45,152.58,154.15,167.67$.
Compound 4f: 81%; colorless oil; \mathbb{R} (film) 1716, 1267 . $1235,1094 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.85$ (s, $3 \mathrm{H}), 5.01(\mathrm{~s} .2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.39(\mathrm{~m}$. $4 \mathrm{H}), 7.43-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}$. $1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \times \mathrm{MR}\left(\mathrm{CDCl}_{5}, 75 \mathrm{MHz}\right) \delta$ $52.34,63.00,105.24,120.64,122.25,125.23,125.83$. $126.42,127.33,127.38,128.55,128.75,129.60,129.73$. 134.48, 134.52, 145.82, 154.25, 167.77.

Compound 4g: 80\%; colorless oil; IR (film) 1717, 1629. $1256,1234,1214 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 300 \mathrm{MHz}\right) \delta 3.86$ $(\mathrm{s} .3 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 4 \mathrm{H})$. $7.41-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 52.35,62.78,107.23,119.15,123.75$. $126.38,126.79,127.17,127.63,128.75,129.15,129.43$, $129.64,129.76,134.42,134.47,145.83,156.36,167.67$.

Compound 8: 71%; colorless oil; \mathbb{R} (film) 1716,1352 , $1253,1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \times \mathrm{MR}\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 2.38(\mathrm{~s}$. $3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.08-7.40 (m, 12H), $7.66(\mathrm{~s}, 1 \mathrm{H})$, ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ $\mathrm{MHz}) \delta 21.54,46.16,52.09 .126 .81,127.90 .128 .05,128.44$ (2С), 129.17 (2C), $129.29,129.81,134.25,134.48,138.58$, 143.48, 143.80, 167.83.

Typical procedure for the synthesis of 6a. A mixture of 4a ($268 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{KOH}(190 \mathrm{mg}, 3.0 \mathrm{mmol})$ in aqueous THF (3 mL) was heated to $40-50{ }^{\circ} \mathrm{C}$ for 3 h . After acidification with aqueous HCl solution and the usual extractive workup with EtOAc, crude acid 5 a was obtained in 91% yield (232 mg). The acid 5 a was used without further purification. A stirred solution of 5 ($232 \mathrm{mg}, 0.91 \mathrm{mmol}$) and TFAA ($390 \mathrm{mg}, 1.86 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was heated to reflux for 1 h . After the usual extractive workup with ether and column chromatographic purification (hexanes/EtOAc, 4:1) process, compound 6a was obtained as
yellow oil, $193 \mathrm{mg}(90 \%)$. Other compounds including 9 were prepared analogously and the spectroscopic data of $6 \mathbf{c}$, $\mathbf{6 e - g}$, and 9 are as follows. Compounds $\mathbf{6 a},{ }^{1 \mathrm{k}} \mathbf{6 b},{ }^{9 \mathrm{~b}}$ and $\mathbf{6 d} \mathrm{d}^{9 \mathrm{k}}$ were known.

Compound 6c: 82%; yellow oil; IR (film) 1672, 1601 , $1479,1304 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.22(\mathrm{~s}$, $3 \mathrm{H}), 5.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-$ $7.35(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 15.46,67.43$, $121.26,121.61,125.49,127.08,128.64,129.34,129.92$, $131.02,134.42,136.67,137.13,159.30,182.62$.

Compound 6e: 84%; yellow solid, mp $74-76{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 1668,1614,1321,1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 5.23(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.65(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.45$ $(\mathrm{m}, 3 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 21.65$, $22.70,67.20,116.05,118.69,126.61,128.61,129.12$, $129.80,132.39,134.70,136.25,142.59,145.83,162.40$, 182.99; ESIMS m/z $265.46\left(\mathrm{M}^{+}+1\right)$.

Compound 6f: 82%; yellow solid, mp $78-80^{\circ} \mathrm{C}$; IR (KBr) $1665,1625,1101 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \lambda \mathrm{MR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.59$ $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.65(\mathrm{~m}, 8 \mathrm{H}), 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.93(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.26$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}){ }^{3}{ }^{3} \mathrm{C} \times \mathrm{MR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 68.29$, $116.35,121.53,122.54,123.43,124.82,126.22,127.88$, $128.72,129.36,129.65,129.94,130.49,134.49,137.01$, 137.40, 159.26, 181.83 .

Compound 6 g : 93%; yellow solid, mp $66-68^{\circ} \mathrm{C}$; IR (KBr) $1663,1617,1597,1511,1434,1241 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \times \mathrm{M}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.39(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.49(\mathrm{~m}, 6 \mathrm{H}), 7.67(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H})$, $9.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $67.46,114.30,118.72,125.02,126.46,128.47,128.69$, $129.23,129.51,129.61,129.83,131.92,132.17,134.70$, 136.76, 137.41, 163.18, 182.54; ESLMS m/z $287.44\left(\mathrm{M}^{-}+1\right)$.

Compound 9: ${ }^{9 \mathrm{~d}} 80 \%$; yellow solid, mp $135-137{ }^{\circ} \mathrm{C}$; IR (KBr) $1674,1607,1356,1167 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 5.06(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-7.04(\mathrm{~m}$, $4 \mathrm{H}), 7.32-7.54(\mathrm{~m}, 7 \mathrm{H}), 7.61-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=7.8$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \times \mathrm{M}$ $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.58,47.93,127.13,127.34,127.40$, $128.19,128.85,128.95,129.49,129.58,129.88,130.01$, $134.14,134.19,134.42,138.39,141.34,144.19,182.57$; ESIMS m/z 390.49 (M ${ }^{+}+1$).

Typical procedure for the synthesis of 7a. A mixture of 6 ($118 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{PCC}(540 \mathrm{mg}, 2.5 \mathrm{mmol})$ in DMF (2 mL) was heated to $40^{\circ} \mathrm{C}$ for 72 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a pad of Celite. After the usual aqueous extractive workup with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and column chromatographic purification (hexanes/ EtOAc, 4:1) process, compound $7 \mathbf{a}$ was obtained as a white solid, $70 \mathrm{mg}(56 \%)$. Other compounds were prepared analogously and the spectroscopic data of synthesized compounds 7a-g are as follows.

Compound 7a: ${ }^{7 \mathrm{l}} 56 \%$; white solid, mp $128-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.44-7.63(\mathrm{~m}, 5 \mathrm{H}), 7.72-7.78(\mathrm{~m}$,
$1 \mathrm{H}), 7.85-7.88(\mathrm{~m}, 2 \mathrm{H}), 8.27$ (dd, $J=9.0$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.30(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \times \mathrm{MR}\left(\mathrm{CDCl}_{5}, 75 \mathrm{MHz}\right) \delta 118.31,124.99$. 125.18 . 126.12, 126.49. 128.41, 129.58, 133.51, 134.38. $137.15,156.07,158.63 .174 .70,191.89$.
Compound 7b: 53%; white solid, mp $129-130^{\circ} \mathrm{C}$; \mathbb{R} (KBr) $1651,1618,1481,1319 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \times \mathrm{MR}\left(\mathrm{CDCl}_{1}, 300\right.$ $\mathrm{MHz}) \delta 2.47(\mathrm{~s}, 3 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.61(\mathrm{~m}, 2 \mathrm{H})$. $7.84-7.88(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{~m}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 20.94,118.01,124.59,124.92,125.72$. $128.32,129.55,133.39 .135 .52,136.22,137.16,154.29$. 158.51. 174.74, 192.01; ESIMS $m / z 265.40\left(\mathrm{M}^{-}+1\right)$.

Compound 7c: 50%; white solid, mp $98-100{ }^{\circ} \mathrm{C}$; R (KBr) 1651, 1577, 1340, $1319 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \times \mathrm{MR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.53(\mathrm{~s}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.49(\mathrm{~m}$. $2 \mathrm{H}), 7.56-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.88(\mathrm{~m}, 2 \mathrm{H}), 8.08-8.11(\mathrm{~m}$. $1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 15.48$. 124.01. 124.90, 124.92, 125.60. 127.85, 128.37, 129.55. $133.43,135.33,137.20,154.58,158.36,175.03,192.03$
Compound 7d: 58%; white solid, mp $137-138{ }^{\circ} \mathrm{C}$; [R (KBr) $1718,1508,1225 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \times \mathrm{MR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 3.90(\mathrm{~s}, 3 \mathrm{H}), 7.32(\mathrm{dd}, J=9.5$ and $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.49$ $(\mathrm{m}, 3 \mathrm{H}), 7.58-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.87(\mathrm{~m}, 2 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)} \delta 55.96,105.57,119.70 .124 .31$ (2C), 125.72, $128.37,129.55,133.41,137.27,150.86$. 157.61, 158.42, 174.56, 192.12

Compound 7e: 46%; white solid, mp $153-155^{\circ} \mathrm{C}$; R (KBr) $1658,1637,1596 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \times \mathrm{MR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.44-$ $7.47(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.87(\mathrm{~m}, 2 \mathrm{H}) .8 .11(\mathrm{~s}$. $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.57,22.78,116.10$. $120.98,126.09,128.40,129.48,130.06,133.35,137.38$. $141.53,144.57,156.60,157.65,176.65,192.42$.
Compound 7f: 54%; white solid, $\mathrm{mp} 182-184{ }^{\circ} \mathrm{C}$ (decomp.); IR (KBr) $1662,1641,1392 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$. $300 \mathrm{MHz}) \delta 7.45-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.70-$ $7.79(\mathrm{~m}, 2 \mathrm{H}) .7 .84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.93(\mathrm{~m}, 2 \mathrm{H})$. $7.96-7.99(\mathrm{~m}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H})$, $8.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $\left.3,75 \mathrm{MHz}\right) \delta$ $120.89,121.52,122.23,123.77,126.22,126.44,127.58$, $128.21,128.46,129.64,129.77,133.59,136.11,137.08$, $153.64,157.46,174.56,191.92$.
Compound 7 g : 70%; white solid, mp $165-167^{\circ} \mathrm{C}$; R (KBr) 1667, 1637, 1592, $1299 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \times \mathrm{MR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 7.45-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.70-7.76(\mathrm{~m}$, $1 \mathrm{H}), 7.91-7.95(\mathrm{~m}, 3 \mathrm{H}), 8.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}$, $1 \mathrm{H}), 9.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $117.32,118.47,127.12,127.22,127.86,128.32,128.50$. $129.53,129.62,130.48,130.89,133.56,136.28,137.18$, $155.20,157.47,176.67,192.31 ;$ ESIMS $m / z 301.42\left(\mathrm{M}^{-}+1\right)$.

Acknowledgments. This study was financially supported by Chonnam National University, 2007. Spectroscopic data was obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. For the synthesis and biological activities of 3 -arylideneflavanone
derivatives, see: (a) Foroumadi, A.; Samzadeh-Kermani, A.; Emami, S.; Dehghan, G.; Sorkhi, M.; Arabsorkhi, F.; Heidari, M. R.; Abdollahi, M.; Shafiee, A. Bioorg. Med. Chem. Lett. 2007, 17, 6764-6769. (b) Rajan, Y. C.; Kanakam, C. C.; Selvam, S. P.; Murugesan, \mathcal{K}. Tetrahedron Lett. 2007, 48, 8562-8565 and further references cited therein. (c) Basavaiah, D.; Bakthadoss, M.; Pandiaraju, S. Chem. Commun. 1998, 1639-1640. (d) Rajan, Y. C.; Kanakam, C. C. Terrahedron Lett. 2008, 49, 3023-3026. (e) Das, B.; Chowdhury, N.; Damodar, K.; Banerjee, J. Chen. Pharn. Bull. 2007, 55, 1274-1276.
2. For the synthesis of similar flavanone derivatives, see: (a) Skouta, R.; Li, C.-J. Angew: Chem. Int. Ed. 2007, 46, 1117-1119. (b) Nakamura, T.; Hara, O.; Tamura, T.; Makino, K.; Hamada, Y. Simen 2005, 155-157. (c) Hodgets, K. J. Terrahedron 2005, 61, 6860-6870. (d) Kawasaki, M.; Toyooka, N.; Matsui, Y.; Tanaka, A.; Goto, M.; Kakuda, H.; Kawabata, S.; Kometani, T. Heterocycles 2005, 65, 761-765. (e) Grigg, R; Liu, A.; Shaw, D.; Selvaratnam, S.; Woodall, D. E.; Yoganathan, G Terrahecron Lett. 2000, 41, 7125-7128.
3. For the synthesis and synthetic usefulness of 3-aroylflavones and related compounds, see: (a) Sosnovskikh, V. Y.; Irgashev, R. A.; Kodess, M. I. Terrahechon 2008, 64, 2997-3004. (b) Biddle, M. M.; Lin, M.; Scheidt, K. A. J. Am. Chem. Soc. 2007, I29, 3830-3831. (c) Skouta R.; Li, C.-J. Tetrahedron Let. 2007, 48, 8343-8346.
4. For the general review on Baylis-Hillman reaction, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chen. Rev. 2003, 103, 811-891. (b) Kim, J. N.; Lee, K. Y. Cury: Org. Chem. 2002, 6, 627-645. (c) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481-1490. (d) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511-4574 and further references cited therein.
5. For our recent contributions on Baylis-Hillman chemistry, see: (a) Kim, S. J.; Kim, H. S.; Kim, T. H.; Kim, J. N. Bill. Korean Chen. Soc. 2007, 28, 1605-1608. (b) Kim, H. S.; Kim, S. H.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 1841-1843. (c) Lee, H. S.: Kim, S. H.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 1773-1776. (d) Kim, S. H.; Kim, K. H.; Kim, H. S.; Kim, J. N. Tetrahedron Lett. 2008, 49, 1948-1951.
6. (a) Kim, S. I.; Lee, H. S.; Kim, J. N. Tetrahedron Letr. 2007, 48 , 1069-1072. (b) Kim, S. C.; Lee, H. S.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 147-150.
7. For the oxidation of 3 -arylideneflavanones into 3 -aroylflavones, see: (a) Nemes, C.; Levai, A.; Patonay, T.; Toth, G; Boros, S.; Halasz, J.; Adam, W.; Golsch, D. J. Org. Chem. 1994, 59, $900-$ 905. (b) Mallik, A.; Chattopadhyay, F. Indion J. Chem. 1999, 38B, 889-892. (c) Mallik, A.; Chattopadhyay, F. Indion J. Chem. 2005, 44B, 1947-1949. (d) Chawla, H. M.; Shama, S. K. Şnth. Commum. 1990, 20, 301-306. (e) Chawla, H. M.; Sharma, S. K. Butl. Soc. Chim. Fr. 1990, 127, 656-659. (f) Adam, W.; Halasz, J.; Levai, A.: Nemes, C.; Patonay, T.; Toth, G. Liebigs Amn. Chen. 1994, 795803. (g) Dhande, V. P.; Thakwani, P.; Marathe, K. G. Tetrahedron 1988, 44, 3015-3023.
8. For the synthesis and biological activities of 3 -benzylflavone and related compounds, see: (a) Kirkiacharian, B. S.; Gomis, M. Synth. Commm. 2005, 35, 563-569. (b) Patonay, T.; Dinya, Z.; Levai, A.; Molnar, D. Tetrahedron 2001, 57, 2895-2907. (c) Hoshino, Y.; Takeno, N. Bull. Chem. Soc. Jpn. 1994, 67, 28732875. (d) Tait, S.; Salvati, A. L.; Desideri, N.; Fiore, L. Anviviral Res. 2006, 72, 252-255. (e) Kirkiacharian, S.; Tongo, H. G.; Bastide, J.; Bastide, P.; Grenie, M. M. Eur J. Med. Chem. 1989, 24, 541-546. (f) Kim, J. H.; Kim, K. H.; Kim, J. H.; Yu, Y. S.; Kim, Y.-M.; Kim, K.-W.; Kwon, H. J. Biochem. Biophs. Res. Conmmm. 2007, 362, 848-852.
9. (a) Krishnamoorthy, T. V.; Rajagopalan, K.; Balasubramanian, K. K. Tetrahedron Lett. 1985, 26, 1747-1748. (b) Ashok, D.; Pallavi, K.: Reddy, G. J.; Rao, K. S. Indian J. Heterocyclic Chem. 2006, 16, 95-96. (c) Ingle, T. R.; Phalnikar, N. L.; Bhide, B. V. J. Indian Chem. Soc. 1949, 26, 569-574. (d) Sangwan, N. K.; Kelkar, P. M.; Rastogi, S. N.,; Anand, N. Indian J. Chem. 1985, 24B, 639-644.
