DOI QR코드

DOI QR Code

Solution Structure and Backbone Dynamics of the Biotinylation Domain of Helicobacter pylori Biotin-carboxyl Carrier Protein

  • Jung, Jin-Won (Department of Biochemistry and Protein Network Research Center, College of Science, Yonsei University) ;
  • Lee, Chul-Jin (Department of Biochemistry and Protein Network Research Center, College of Science, Yonsei University) ;
  • Jeon, Young-Ho (Magnetic Resonance Team, Korea Basic Science Institute (KBSI)) ;
  • Cheong, Chae-Joon (Magnetic Resonance Team, Korea Basic Science Institute (KBSI)) ;
  • Lee, Weon-Tae (Department of Biochemistry and Protein Network Research Center, College of Science, Yonsei University)
  • Published : 2008.02.20

Abstract

Acetyl-CoA carboxylase (ACC) is an excellent candidate for antibiotics drug target, which mediates malonyl-CoA synthesis from acetyl-CoA through acetylation process. It is also involved in the committed step of fatty acid synthesis which is essential for living organisms. We have determined the three dimensional structure of C terminal domain of HP0371, biotin-carboxyl carrier protein of H. pyroli, in solution state using heteronuclear multi-dimensional NMR spectroscopy. The structure of HP0371 shows a flatten b-sheet fold which is similar with that of E. coli. However, the sequence and structure of protruding thumb are different with that of E. coli and the thumb shows different basis of structural rigidity based on backbone dynamics data.

Keywords

References

  1. Kwok, T.; Zabler, D.; Urman, S.; Rohde, M.; Hartig, R.; Wessler, S.; Misselwitz, R.; Berger, J.; Sewald, N.; Konig, W.; Backert, S. Nature 2007, 449, 862-6 https://doi.org/10.1038/nature06187
  2. Cronan, J. E., Jr.; Waldrop, G. L. Prog. Lipid Res. 2002, 41, 407- 35 https://doi.org/10.1016/S0163-7827(02)00007-3
  3. Tomb, J. F.; White, O.; Kerlavage, A. R.; Clayton, R. A.; Sutton, G. G.; Fleischmann, R. D.; Ketchum, K. A.; Klenk, H. P.; Gill, S.; Dougherty, B. A.; Nelson, K.; Quackenbush, J.; Zhou, L.; Kirkness, E. F.; Peterson, S.; Loftus, B.; Richardson, D.; Dodson, R.; Khalak, H. G.; Glodek, A.; McKenney, K.; Fitzegerald, L. M.; Lee, N.; Adams, M. D.; Hickey, E. K.; Berg, D. E.; Gocayne, J. D.; Utterback, T. R.; Peterson, J. D.; Kelley, J. M.; Cotton, M. D.; Weidman, J. M.; Fujii, C.; Bowman, C.; Watthey, L.; Wallin, E.; Hayes, W. S.; Borodovsky, M.; Karp, P. D.; Smith, H. O.; Fraser, C. M.; Venter, J. C. Nature 1997, 388, 539-47 https://doi.org/10.1038/41483
  4. Athappilly, F. K.; Hendrickson, W. A. Structure 1995, 3, 1407- 19 https://doi.org/10.1016/S0969-2126(01)00277-5
  5. Yao, X.; Wei, D.; Soden, C., Jr.; Summers, M. F.; Beckett, D. Biochemistry 1997, 36, 15089-100 https://doi.org/10.1021/bi971485f
  6. Roberts, E. L.; Shu, N.; Howard, M. J.; Broadhurst, R. W.; Chapman-Smith, A.; Wallace, J. C.; Morris, T.; Cronan, J. E., Jr.; Perham, R. N. Biochemistry 1999, 38, 5045-53 https://doi.org/10.1021/bi982466o
  7. Boyd, J.; Hommel, U.; Campbell, I. D. Chemical Physics Letters 1990, 175, 477-82 https://doi.org/10.1016/0009-2614(90)85567-V
  8. Farrow, N. A.; Muhandiram, R.; Singer, A. U.; Pascal, S. M.; Kay, C. M.; Gish, G.; Shoelson, S. E.; Pawson, T.; Forman-Kay, J. D.; Kay, L. E. Biochemistry 1994, 33, 5984-6003 https://doi.org/10.1021/bi00185a040
  9. Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. J. Biomol NMR 1995, 6, 277-93
  10. Goddard, T. D.; Kneller, D. G.; 3.110 ed.; University of California: San Francisco, 2004
  11. Zimmerman, D. E.; Kulikowski, C. A.; Huang, Y.; Feng, W.; Tashiro, M.; Shimotakahara, S.; Chien, C.; Powers, R.; Montelione, G. T. J. Mol. Biol. 1997, 269, 592-610 https://doi.org/10.1006/jmbi.1997.1052
  12. Herrmann, T.; Guntert, P.; Wuthrich, K. J. Mol. Biol. 2002, 319, 209-27 https://doi.org/10.1016/S0022-2836(02)00241-3
  13. Cornilescu, G.; Delaglio, F.; Bax, A. J. Biomol. NMR 1999, 13, 289-302 https://doi.org/10.1023/A:1008392405740
  14. Fernandez, C.; Hilty, C.; Wider, G.; Guntert, P.; Wuthrich, K. J. Mol. Biol. 2004, 336, 1211-21 https://doi.org/10.1016/j.jmb.2003.09.014
  15. Palmer, A. G.; Rance, M.; Wright, P. E. J. Am. Chem. Soc. 1991, 113, 4371-4380 https://doi.org/10.1021/ja00012a001
  16. Dosset, P.; Hus, J. C.; Blackledge, M.; Marion, D. J. Biomol. NMR 2000, 16, 23-8 https://doi.org/10.1023/A:1008305808620
  17. Tsan, P.; Hus, J. C.; Caffrey, M.; Marion, D.; Blackledge, M. J. Am. Chem. Soc. 2000, 122, 5603-12 https://doi.org/10.1021/ja993654k
  18. Lipari, G.; Szabo, A. J. Am. Chem. Soc. 1982, 104, 4546-4559 https://doi.org/10.1021/ja00381a009
  19. Reche, P. A.; Howard, M. J.; Broadhurst, R. W.; Perham, R. N. FEBS Lett. 2000, 479, 93-8 https://doi.org/10.1016/S0014-5793(00)01829-9
  20. Weaver, L. H.; Kwon, K.; Beckett, D.; Matthews, B. W. Protein. Sci. 2001, 10, 2618-22 https://doi.org/10.1110/ps.ps.32701
  21. Cronan, J. E., Jr. J. Biol. Chem. 2001, 276, 37355-64 https://doi.org/10.1074/jbc.M106353200
  22. Wilbur, W. J.; Lipman, D. J. Proc. Natl. Acad. Sci. USA 1983, 80, 726-30 https://doi.org/10.1073/pnas.80.3.726
  23. Gouet, P.; Courcelle, E.; Stuart, D. I.; Metoz, F. Bioinformatics 1999, 15, 305-8 https://doi.org/10.1093/bioinformatics/15.4.305

Cited by

  1. Helicobacter pylori Immunoproteomic Profiles in Gastric Cancer vol.20, pp.1, 2021, https://doi.org/10.1021/acs.jproteome.0c00466