Synthesis of α-Methylene- β-Pyrrole Esters via Organocatalytic Regioselective Allylic Substitutions of Morita-Baylis-Hillman Acetates

Su-Hyun Kwon and Chang-Woo Cho ${ }^{\circ}$
Department of Chemistry, Kyungpook National Cnmersity, Daegu 702-701, Korea. ${ }^{*}$-mail: Cwchoaknu.ackr Recened July 15, 2008

Key Words: Py̧rrole. Organocatalytic allylic substitution. Morita-Baylis-Hillman acetate

The Morita-Baylis-Hillman (MBH) reaction is one of the most efficient methods for the synthesis of α-methylene- β hydroxy carbonyl compounds as versatile internediates for pharmaceuticals and biologically active natural products. ${ }^{1}$ Considerable efforts have been devoted to the development of MBH reactions and their application to the synthesis of biologically potent compounds. Recently. stoichiometric ${ }^{2}$ and organocatalytic ${ }^{3,4}$ variants of allylic substitutions of MBH acetates via a tandem $\mathrm{S}_{\mathrm{N}} \cdot 2^{\prime}-\mathrm{S}_{\mathrm{y}} 2^{\prime}$ mechanism have come to light. Different types of nucleophiles such as TsNH_{2}, phthalimides (N -based nucleophiles) ${ }^{\text {. }}$.ar,c,d dialkyl malonates, 2 -silyloxyfuran (C-based nucleophiles), ${ }^{3 \mathrm{~d}, \text {, } \mathrm{tb}, \mathrm{c}, \mathrm{e},}$ and phenols (O-based nucleophiles) ${ }^{36,1}$ have been reported in the organocatalytic allylic substitutions of MBH acetates. However, to the best of our knowledge, there are no examples stating the use of pyrroles as nucleophiles in the organocatalytic allylic substitutions of MBH acetates, even though pyrroles are important moieties in many natural products, ${ }^{-}$pharmaceuticals. ${ }^{6}$ and materials. ${ }^{7}$ In this study. we report the first examples of organocatalytic allylic substitutions using pyrroles as nucleophiles for the synthesis of various α-methy lene- β-pyrrole esters.
To explore the feasibility of pyrroles as nucleophiles in the organocatalytic allylic substitutions of MBH acetates. the allylic substitutions of MBH acetate 1 with a variety of pyrroles were performed in the presence of PPh_{3} and DABCO as representative P - and N-based organocatalysts. respectively (Table 1). Neither of these catalysts provided the desired product 1a when added to a THF solution of MBH acetate 1 and pyrrole at ambient temperature (Table 1. entries 1,2). It was speculated that the leaving group was not sufficiently basic for the deprotonation of pyrrole as the pronucleophile. Therefore, in order to increase the acidity of pyrrole. electron-withdrawing groups were introduced into the 2 -position of pyrrole. When an electron-withdrawing group such as a trichloromethylcarbonyl group or an ethyl ester group was introduced into the 2-position of pyrrole in the presence of PPh_{3} or DABCO as the catalyst, respectively. the corresponding substitution products 1 a were not obtained (Table 1, entries 3, 4). Even 2-cyanopyrrole did not undergo allylic substitution with 1 in a THF solution in the presence of PPh_{3} (Table 1, entry 5). In addition, in the case of PBu_{3} as the catalyst. the allylic substitutions gave no desired allylic substitution product (Table 1, entry 6). On the contrary. when PPh_{3} was replaced with DABCO with the
other reaction conditions remaining the same. the allylic substitution product 1 a was obtained in 34% yield along with the regioisomeric by-product $\mathbf{1 h}$ in 23% yield (Table 1 . entry 7). However, under the same reaction conditions. the replacement of THF with toluene did not yield the desired ally lic substitution product (Table 1. entry 8). Hence, it was concluded that DABCO is the appropriate catalyst to be used in the substitution reactions of $\mathbf{1}$ with pyrroles as the pronucleophiles (Table 1. entry $5,6 \vee 57$). When 2,4 -dicyanopyrrole. whose $\mathrm{p} K_{\mathrm{a}}$ is lower than that of 2 -cyanopyrrole, was used as the pronucleophile in the substitution reaction of 1 in the presence of DABCO in THF at ambient temperature. the yield of 1 a was marginally increased, i.e.. up to 49%, but 1b was still generated in 25% yield (Table 1, entry 9). To

Table 1. Optimization of organocatalytic allylic substitutions of MBH acetates 1 with pymole nucleophiles ${ }^{a}$

Entry	NuH	Catalyst	Solvent	Temp. (C)	Yield (\%)	
					1 a	1b
1	/	PPh_{3}	THF	1 t	$n d^{b}$	nd ${ }^{\text {b }}$
2	H	DABCO	THF	rt	$\mathrm{n} d^{\text {b }}$	$n \mathrm{~d}^{\text {b }}$
3	"	PPh_{3}	THF	rt	$n d^{\text {b }}$	$n d^{6}$
4	$\begin{gathered} \mathrm{R} \\ \mathrm{R}=\mathrm{CCl}_{3}, \mathrm{OEt} \end{gathered}$	DABCO	THF	rt	$n d^{\text {b }}$	$n d^{\text {b }}$
5		PPh_{3}	THF	rt	$n d^{b}$	$n d^{5}$
6		$\mathrm{PBu}{ }_{3}$	THF	rt	$n d^{\text {b }}$	17
7	CN	DABCO	THF	rt	34	23
8	H	DABCO	Toluene	rt	$n d^{\text {b }}$	$n \mathrm{~d}^{\text {b }}$
9	NC	DABCO	THF	It	49	25
10		DABCO	Toluene	It	26	$n \mathrm{~d}^{5}$
11	$\begin{gathered} \mathrm{N} \\ \mathrm{H} \end{gathered}$	DABCO	Toluene	60	98	$n d^{\text {b }}$

[^0]prevent the formation of $\mathbf{1 b}$, the substitution reaction was tested under identical conditions in a series of solvents. Among the sovents screened. toluene proved to be superior to the rest. Hence. even though the allylic substitution of MBH acetate 1 with 2 , 4 -dicyanopyrrole in toluene in the presence of DABCO at ambient temperature afforded $\mathbf{1 a}$ in only 26% yield. fortunately. 1b was not formed (Table 1 . entry 10). By comparing the yields of the substitution reaction of 1 at various temperatures. $60^{\circ} \mathrm{C}$ was identified as the ideal temperature that afforded 1 a in 98% yield as a single regioisomer (Table I. entry ll).
Under these optimized conditions, we explored the DABCO-catalyzed allylic substitutions of MBH acetates 16, which bear aromatic, aliphatic, cyclohexyl, and TBSprotected hydroxymethyl substituents, with 2.4 -dicyanopyrrole in toluene at $60^{\circ} \mathrm{C}$ (Table 2). The corresponding allylic substitution products, which are α-methylene- β pyrrole esters. $\mathbf{7 - 1 2}$ were obtained with good regioselectivity, as determined by ${ }^{1} \mathrm{H}$ NMR analysis, wia a tandem $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ mechanism in good to excellent yields.
To expand the scope of pyrroles as nucleophiles in the DABCO-catalyzed regioretentive allylic substitutions of MBH acetates, the substitution reactions of the same with a series of pyrroles were explored under the optimized reaction conditions (Table 3). Among the pyrroles tested, 2 cyanopyrroles with 4,5 -dibromo, 4-acetyl, and 4-phenylacetyl substituents undervent the catalytic allylic substitutions to provide the corresponding substitution products 1315 as single regioisomers in good to excellent yields. However, under the same reaction conditions, 4-cyano-2trichloroacetylpyrrole did not yield the desired substitution product 16. Therefore based on these results of the allylic substitutions using 2-trichloroacetylpyrrole, ethyl pyrrole-2carboxylate (Table 1, entries 3.4). and 4-cyano-2-trichloroacetylpyrrole (Table 3, 16) as the nucleophile. it was speculated that the cyano group at the 2 -position of the pyrroles used plays a crucial role in the substitution reactions.
To control the asymmetric induction of this transformation. (-)-8-phenylmenthol as a chiral auxiliary was used (Table 4). The DABCO-catalyzed allylic substitutions of the (-)-8phenylmenthol ester 17 with various 4 -substituted and 4.5disubstituted 2-cyanopyrroles afforded the corresponding

Table 2. DABCO-catalyzed allylic substitutions of $M B H$ acetates 1-6 using 2,4-dicyanopyrrole as the nucleophile ${ }^{\pi}$

${ }^{a}$ Procedure: To a reaction vessel charged with substrate (0.5 mmol .100
 was added tolnene ($5.0 \mathrm{~mL} .(0.1 \mathrm{M}$). The reaction was allowed to stir at $60{ }^{\circ} \mathrm{C}$ for 12 h , at which point the reaction mixture was evaporated onto silica gel and the product was isolated by silica gel chromatography.
substitution products $\mathbf{1 8 - 2 1}$ as single regioisomers in good to excellent yields with a diastereomeric ratio of up to 7:1.

In conclusion, the regioselective allylic substitution of MBH acetates 1-6 with 4 -substituted and 4,5 -disubstituted 2 -cyanopyrroles in the presence of DABCO catalyst afforded a series of α-methylene- β-pyrrole esters as the substitution products in good to excellent yields wia a tandem $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\wedge} 2^{\prime}$ substitution mechanism. To the best of our knowledge, till date, pyrroles have never been used as nucleophiles in the organocatalytic ally lic substitutions of MBH acetates. Therefore, this is the first example in which the pyrroles are used as nucleophiles in the substitution reactions. In addition. the asymmetric version of these transfomations using (-)-8-pheny limenthol ester 17 afforded the corresponding substitution products $\mathbf{1 8 - 2 1}$ with a diastereomeric ratio of up to $7: 1$.

Table 3. Various pyrroles for DABCO-catalyzed allylic substitutions of MBH acetate 1^{a}

Table 4. Asymmetric allylic substitutions using (-)-8-pheny hnenthol ester $\mathbf{1 7}^{\text {a }}$
Entry
${ }^{\text {a }}$ Procedure: as described in Table 2. ${ }^{\text {b }}$ Cited yields are of isolated material. In all cases. $95: 5$ regioselectivity is observed. ${ }^{c}$ Diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis.

Experimental Section

Typical procedure for the allylic substitutions. To a reaction vessel charged with substrate $(0.5 \mathrm{mmol}, 100$ $\mathrm{mol} \%$). NuH ($1.0 \mathrm{mmol}, 200 \mathrm{~mol} \%$), and DABCO (0.1 $\mathrm{mmol} .20 \mathrm{~mol} \%$) was added toluene ($5.0 \mathrm{~mL}, 0.1 \mathrm{M}$). The reaction was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h , at which point the reaction mixture was evaporated onto silica gel and the product was isolated by silica gel chromatography.
The spectroscopic data of 7-15 and 17-21 are as follows.
Compound 7: white solid. $\mathrm{mp} 87-88^{\circ} \mathrm{C}$: IR (neat) 2231. 1717. 1526. 1349. $913.743 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz . $\left.\mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d} . J=8.6 \mathrm{~Hz} .2 \mathrm{H}) .7 .31(\mathrm{~d} . J=8.6 \mathrm{~Hz} .2 \mathrm{H})$. $7.24(\mathrm{~d} . J=1.7 \mathrm{~Hz} .1 \mathrm{H}) .7 .16(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}) .6 .76(\mathrm{~d} . J$ $=0.7 \mathrm{~Hz} .1 \mathrm{H}) .6 .70(\mathrm{~s}, 1 \mathrm{H}) .5 .41(\mathrm{~d} . J=1.5 \mathrm{~Hz} .1 \mathrm{H}) .4 .25-$ $4.22(\mathrm{~m} .2 \mathrm{H}), 1.26(\mathrm{t} . J=7.0 \mathrm{~Hz} .3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (75 MHz. $\left.\mathrm{CDCl}_{3}\right) \delta$ 163.7. 148.4. 141.6, 137.5, 131.5, 130.3. 128.4. 124.6. $123.2,113.4 .110 .6,106.9,95.5,62.2,13.9$: HRMS calcd for $[\mathrm{M}] \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} 350.3344$, found 350.3351 .
Compound 8: colorless oil: IR (neat) 2229. 1717. 1543. 1455. 1371. 1262. $1143.702 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz . $\left.\mathrm{CDCl}_{3}\right) \delta 7.47-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.12(\mathrm{~m} .3 \mathrm{H}) .7 .10(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}) .6 .65(\mathrm{~s} .1 \mathrm{H}), 6.58(\mathrm{~s} .1 \mathrm{H}) .5 .29(\mathrm{~d} . J=1.5 \mathrm{~Hz}$. $1 \mathrm{H}) .4 .20(\mathrm{q} . J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .1 .22(\mathrm{t} . J=7.0 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(75 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta$ 164.0. 138.5. 134.4. 130.7. 129.9. 129.5. 129.4. 127.7. 122.8. 113.9, 110.9, 106.7, 94.6, 63.1. 61.7. 13.9. EIMS mz $305\left(\mathrm{M}^{+}\right)$.

Compound 9: colorless oil: IR (neat) 2228. 1716. 1540. 1330. 1249. 1147. $799 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}$) δ $7.95-7.92(\mathrm{~m} .2 \mathrm{H}), 7.76-7.74(\mathrm{~m} .1 \mathrm{H}) .7 .58-7.55(\mathrm{~m} .2 \mathrm{H})$.
$7.49-7.45(\mathrm{~m}, \mathrm{IH}), 7.35(\mathrm{~s}, 1 \mathrm{H}) .7 .16(\mathrm{~d} . J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=7.0 \mathrm{~Hz} .1 \mathrm{H}) .7 .04(\mathrm{~d} . J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J$ $=0.7 \mathrm{~Hz} . \mathrm{H}) .5 .18(\mathrm{~d} . J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q} \cdot J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}) .1 .18(\mathrm{t} . J=7.0 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $164.0,138.3,134.0$. 131.2 . 130.5, 129.4, 129.1. 127.6. $126.5,125.1 .124 .9,123.0,121.9,113.7,110.7,106.6 .94 .5$, 61.7, 59.6, 14.0; EIMS $m=355\left(\mathrm{M}^{+}\right)$.

Compound 10: colorless oil; IR (neat) 2932. 2229, 1717. 1543. 1375. 1260, 1158, 1025, $842 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) .7 .01$ (d. $J=1.5 \mathrm{~Hz}$, 1H). $6.55(\mathrm{~s}, \mathrm{IH}) .5 .92(\mathrm{~s}, \mathrm{IH}) .5 .20(\mathrm{t} . J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) .4 .22$ $4.17(\mathrm{~m} .2 \mathrm{H}) .2 .09-2.03(\mathrm{~m}, 2 \mathrm{H}) .1 .31-1.11(\mathrm{~m} .10 \mathrm{H}) .0 .89-$ $0.83(\mathrm{~m} .4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,137.8$, $130.2,128.6,122.2$. $114.0,111.4,106.3$. 94.6 .61 .5 .59 .9. 32.9. 31.0. 25.6, 22.2. 13.9. 13.7. EIMS mz 299 (M^{-}).

Compound 11: colorless oil: IR (neat) 2931. 2230, 1717, 1370. 1237. $1159,1024,981 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.59(\mathrm{~s}, \mathrm{lH}) .6 .07(\mathrm{~s} .1 \mathrm{H}), 4.80(\mathrm{~d}, J=11.2 \mathrm{~Hz} .1 \mathrm{H}), 4.23-$ $4.18(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{t}$, $J=7.3 \mathrm{~Hz} .3 \mathrm{H}) .1 .31-1.14(\mathrm{~m}, 4 \mathrm{H}) .1 .00-0.93(\mathrm{~m} .2 \mathrm{H}) \cdot{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8,136.2,130.8,125.7,121.9$, $114.1,111.7 .106 .6,94.7,66.1,61.5,60.8,39.5,30.6,29.5$, $25.8,25.4,14.0$, EIMS $m=311\left(\mathrm{M}^{+}\right)$.

Compound 12: white solid, mp $82-83^{\circ} \mathrm{C}$; IR (neat) 2930. 2230 . $1718,1253.1127,838,779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.56(\mathrm{~s} .1 \mathrm{H}), 5.77(\mathrm{~d} . J=1.2 \mathrm{~Hz}, \mathrm{IH}) .5 .32(\mathrm{t} . J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}) .4 .19-4.16(\mathrm{~m} .2 \mathrm{H}) .4 .15-4.04(\mathrm{~m} .2 \mathrm{H}), 1.24(\mathrm{t}, J=7.1$ $\mathrm{Hz} .3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}),-0.02$ (s. 3 H). -0.03 (s. 3 H) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.2,135.5,131.1,129.5,122.1$, 114.1, 111.2. 106.5, 94.4, 63.0, 61.6, 60.5, 25.5, 17.9, 13.9. -5.7. -5.8: HRMS calcd for [M] $\mathrm{C}_{10} \mathrm{H}_{2} 7 \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si} 373.5286$, found 373.5297.

Compound 13: yellow oil. IR (neat) 2253, 1715, 1525, $1349.913,743 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 8.25(\mathrm{~d}$, $J=9.0 \mathrm{~Hz} .2 \mathrm{H}) .7 .36(\mathrm{~d} . J=8.5 \mathrm{~Hz} .2 \mathrm{H}), 6.97(\mathrm{~s} .1 \mathrm{H}), 690$ (s. 1H). $6.80(\mathrm{~d} . J=1.0 \mathrm{~Hz}, 1 \mathrm{H}) .5 .57(\mathrm{~d} . J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.26-4.23(\mathrm{~m} .2 \mathrm{H}) .1 .26(\mathrm{t} . J=7.0 \mathrm{~Hz} .3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4,148.0 .141 .8,135.9 .132 .5,129.2$, $124.4,124.1,112.9 .111 .6 .105 .3,101.1 .63 .0 .61 .9 .14 .0$. HRMS calcd for [M] $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$ 483.1158. found 483.1204.

Compound 14: yellow oil. IR (neat) 3122. 2984. 2225. 1717. 1675, 1525, 1349. 1211, 913. $740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26$ (d. $\left.J=9.0 \mathrm{~Hz}, 2 \mathrm{H}\right) .7 .32(\mathrm{~s}, 1 \mathrm{H}) .7 .31$ (d. $J=8.5 \mathrm{~Hz} .2 \mathrm{H}), 7.26(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .5 .39(\mathrm{~d} . J=1.5$ Hz. 1H). 4.22 (q. $J=7.0 \mathrm{~Hz} .2 \mathrm{H}$). 2.39 (s. 3 H). 1.24 (t. $J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.8,163.8$, $148.2,142.2,137.8 .131 .2,128.5 .127 .5,124.4 .120 .9,111.6$, 106.5. 62.0. 61.7. 27.2. 13.9: HRMS calcd for [M] $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5} 367.3620$, found 367.3627 .

Compound 15: white solid, mp $107-108{ }^{\circ} \mathrm{C}$; IR (neat) 2253. 1717, 1674. 1526, 1350.913. $743 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MH} \angle, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.22(\mathrm{~m}$, $11 \mathrm{H}), 6.71(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}) .6 .65(\mathrm{~s} .1 \mathrm{H}) .5 .32(\mathrm{~d} . J=1.4$ Hz. 1H). 4.19 (q. $J=7.0 \mathrm{~Hz} .2 \mathrm{H}) .4 .01$ (s. 2 H$) .1 .22(\mathrm{t} . J=$
$7.0 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.6. 163.8. 142.2. 137.8. 134.1, 131.1, 130.1. 129.2, 128.8, 128.5. 128.3. 127.1, 125.4, 124.5. 123.9. 121.2. 111.6. 106.5, 62.0. 61.8, 47.1, 13.9: HRMS calcd for [M] $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{5} 443.4601$, found 443.4609 .

Compound 17 (misture of two diastereomers, $\mathrm{dr}=2: 1$): yellow oil; IR (neat) 2957. 1750, 1708. 1523. 1348, 1226. $1031,700 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.16$ $(\mathrm{m}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m} .2 \mathrm{H}), 7.26-7.02(\mathrm{~m}, 5 \mathrm{H}) .6 .47$ and 6.25 (minor: s, major: s, 1 H), 5.74 and 5.67 (major: s. minor: s, IH). 5.70 and 5.44 (major: d. $J=0.8 \mathrm{~Hz}$. minor: d. $J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.89 and 4.80 (minor: $\mathrm{dt}, J=10.4,4.4 \mathrm{~Hz}$, major: dt. $J=10.8 .4 .4 \mathrm{~Hz} .1 \mathrm{H}$), 2. 12-2.09 (minor: s, major: s. 3 H). 2.08-2.01 (m. 1H), 1.76-1.68 (m. 7H), 1.23-1.15 (minor: d. J $=33.6 \mathrm{~Hz}$, major: $\mathrm{d}, J=20.0 \mathrm{~Hz}, 6 \mathrm{H}$). 0.83 and 0.80 (minor: d, $J=6.3 \mathrm{~Hz}$. major: d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz} . \mathrm{CDCl}_{3}$) major: δ 169.1. 163.7. 151.9, 147.8, 145.8 . 138.4. 128.9. 128.3, 125.4, 125.2, 123.6. 75.6, 72.3. 50.5 . 41.5, 39.6. 34.6. 31.4, 28.8. 26.6, 24.3. 21.1: EIMS mz 479 (M^{+})
Compound 18 (misture of two diastereomers, $\mathrm{dr}=4: 1$): colorless oil; IR (neat) 2253, 2127, 1651. 1026, 825. 763 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 8.29-8.25$ (minor: d, J $=8.5 \mathrm{~Hz}$. major: d. $J=9.0 \mathrm{~Hz} .2 \mathrm{H}) .7 .35-7.27(\mathrm{~m}, 4 \mathrm{H}) .7 .20-$ $7.04(\mathrm{~m}, 5 \mathrm{H}) .6 .03(\mathrm{~s}, \mathrm{H}), 5.97(\mathrm{~s} .1 \mathrm{H}), 5.02$ and 4.96 (major: d. $J=1.5 \mathrm{~Hz}$, minor: $\mathrm{d}, J=1.5 \mathrm{~Hz} . \mathrm{IH}$). $4.91-4.84$ (m, lH). 2.19-2.14 (m, IH). 1.95-1.92 (m, lH), 1.73-1.70 (m, IH). 1.53-1.50 (m. IH). 1.48-1.41 (m. IH), $1.29(\mathrm{~s}, 3 \mathrm{H})$. $1.23-1.18(\mathrm{~m} .1 \mathrm{H}), 1.16(\mathrm{~s} .3 \mathrm{H}), 0.95-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.87$ and 0.85 (minor: d, $J=6.5 \mathrm{~Hz}$, major: d, $J=6.5 \mathrm{~Hz} .3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major: $\delta 162.7,152.4,148.2 .141 .7$. 137.1. 132.3. $130.0,128.2$. 125.3. 125.1, 124.4, 123.0. 113.4. $110.5,106.7 .95 .3,76.2,61.7,49.7,41.2$. 39.2. 34.2. 31.1, 30.3. 26.0, 22.0. 21.6: EIMS $m z 536$ (M^{-}).

Compound 19 (mixture of two diastereomers, $\mathrm{dr}=5: 1$): colorless oil; IR (neat) 2923, 2223. 1675, 1525. 1348, 1210. $913,742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29-8.19(\mathrm{~m}$. $2 \mathrm{H}) .7 .35-7.20(\mathrm{~m} .7 \mathrm{H}), ~ 7.17-7.06(\mathrm{~m} .2 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H})$. $5.97(\mathrm{~s} .1 \mathrm{H}) .4 .99$ and 4.98 (major: d. $J=1.5 \mathrm{~Hz}$, minor: $\mathrm{d} . J$ $=1.3 \mathrm{~Hz}, 1 \mathrm{H}) .4 .90-4.83(\mathrm{~m}, 1 \mathrm{H}) .2 .38(\mathrm{~s} .3 \mathrm{H}) .2 .19-2.13(\mathrm{~m}$. $1 \mathrm{H}) .1 .93-1.88(\mathrm{~m} .1 \mathrm{H}) .1 .71-1.68(\mathrm{~m} .1 \mathrm{H}) .1 .50-1.45(\mathrm{~m}$. $1 \mathrm{H}) .1 .43-1.39(\mathrm{~m} .1 \mathrm{H}) .1 .26(\mathrm{~s} .3 \mathrm{H}) .1 .16(\mathrm{~s} .3 \mathrm{H}) .0 .95-0.88$ (m. 2 H). 0.84 and 0.79 (minor: d. $J=6.3 \mathrm{~Hz}$. major: d. $J=$ 6.3 Hz .3 H): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} . \mathrm{CDCl}_{3}$) major: δ 191.6. 163.0. 152.3. $148.1,142.4,137.5 .131 .9,128.3,127.2$. 125.4. 125.1. 124.3. 120.8. 111.6. 106.4. 76.0. 61.3. 49.9. 41.1. 39.3. 34.2. 31.0. 30.1. 29.6. 27.2. 26.1. 22.2. 21.6: EIMS mz 553 (M M^{-}.
Compound 20 (misture of two diastereomers, $\mathrm{dr}=5: 1$): white solid. mp $57-58^{\circ} \mathrm{C}$: IR (neat) 2923. 2223. 1709. 1674. 1525. 1348, 1244. 1155.913. $744,701 \mathrm{~cm}^{-1}$, ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 8.21-8.19(\mathrm{~m}, 2 \mathrm{H}) .7 .35-7.11(\mathrm{~m} .12 \mathrm{H}), 7.08$ $(\mathrm{s} .1 \mathrm{H}), 7.05(\mathrm{~s} .1 \mathrm{H}), 5.98(\mathrm{~d} . J=0.7 \mathrm{~Hz}, 1 \mathrm{H}) .5 .95(\mathrm{~s}, \mathrm{IH})$. 4.96 and 4.92 (major: d $J=1.5 \mathrm{~Hz}$, minor: d. $J=1.3 \mathrm{~Hz}$.
(H). 4.87-4.81(m. 1H), $3.99(\mathrm{~d}, J=2.5 \mathrm{~Hz} .2 \mathrm{H}), 2.17-2.10$ $(\mathrm{m}, 1 \mathrm{H}), 1.92-1.88(\mathrm{~m} .1 \mathrm{H}), 1.70-1.64(\mathrm{~m} .2 \mathrm{H}), 1.42-1.41$ $(\mathrm{m}, 2 \mathrm{H}) .1 .25(\mathrm{~s}, 3 \mathrm{H}) .1 .14(\mathrm{~s} .3 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 2 \mathrm{H}) .0 .83$ and 0.75 (minor: d, $J=6.3 \mathrm{~Hz}$, major: $\mathrm{d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} . \mathrm{CDCl}_{3}$) major: $\delta 152.3$. 148.1. 137.5, 131.8 , 129.2, 128.8, 128.3. 127.9. 127.1, 125.4, 125.1. 124.2. $120.0,111.6 .106 .3,85.2 .76 .0 .61 .3$. 49.9, 47.0, 41.0, 39.3, $34.2,31.0,30.2,26.1 .22 .2$. 21.6: HRMS calcd for [M] $\mathrm{C}_{39} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} 629.7582$, found 629.7590 .
Compound 21 (mixture of two diastereomers. $\mathrm{dr}=7: 1$): colorless oil: IR (neat) 2924. 2221, 1717. 1522, 1348. 1242, 1167, $731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25-8.23$ $(\mathrm{m}, 2 \mathrm{H}) .7 .32-7.24(\mathrm{~m} .10 \mathrm{H}) .7 .16-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~s} .1 \mathrm{H})$, $6.24(\mathrm{~d}, J=1.3 \mathrm{~Hz} . \mathrm{IH}) .6 .21(\mathrm{~s}, 1 \mathrm{H}), 5.27$ and 5.16 (major: d. $J=1.7 \mathrm{~Hz}$. minor: d, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}) .4 .97-4.91(\mathrm{~m} . \mathrm{lH})$, $2.16-2.09(\mathrm{~m}, 1 \mathrm{H}) .1 .89-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.50-1.38(\mathrm{~m}, 2 \mathrm{H}) .1 .32(\mathrm{~s}, 3 \mathrm{H}) .1 .27-1.24(\mathrm{~m} . \mathrm{HH}) .1 .18(\mathrm{~s}$, $3 \mathrm{H})$. $1.17-1.09(\mathrm{~m}, \mathrm{IH}), 0.98-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.85$ and 0.84 (minor: $\mathrm{d}, J=6.3 \mathrm{~Hz}$. major: $\mathrm{d}, J=6.3 \mathrm{~Hz} .3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major: $\delta 163.2$. $151.7 .147 .9,141.7,135.8$, 132.7, 128.9. 128.0, 125.5. 125.0, 124.0. 112.6, 111.6, 105.0. $100.9,75.7,62.8,50.2,41.3 .39 .4 .34 .3,31.2,31.0,29.3$. 26.2, 23.2, 21.6; EIMS $m z 669\left(\mathrm{M}^{+}\right)$.

Acknowledgments. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD. Basic Research Promotion Fund) (KRF-2007-331-C00157).

References and Notes

1. Basavaiah, D.: Rao. A. J.: Satyanarayana, T. Chem. Rev 2003. 103.811 .
2. (a) Gong. J. H.: Kim, H. R.; Ryu. E. K.: Kim, J. N. Bull. Kowam Chen. Soc. 2002. 23. 789. (b) Kim. T. N.: Lee. H. J.: Lee. K. Y.: Gong. T. H. Sinletr 2002.173.
3. For allylic substitutions of MBH acetates catalyzed by F -based catalysts. See: (a) Ciclosi. M.: Fava. C.: Galeazzi. R.; Orena, M; Sepulveda-Arques, J. Temahedron Lett. 2002. 43. 2199. (b) Kim. J. N.: Lee, H. J.: Gong. J. H. Tetrahedron Lett. 2002. 43. 9141 . (c) Galeazzi. R.: Martelli. G.: Orena. M. Rinaldi. S. Simhesis 2004. 2560. (d) Du. Y.: Han. X.: Lu. X. Tetrahedron Lett. 2004. +5. 4967.
4. For allylic substitutions of MBH acetates catalyzed by P-based catalysts. See: (a) Cho, C.-W.: Kong, J.-R; Krische, M. J. Org. Lett. 2004. 6, 1337. (b) Cho. C.-W., Krische. M. J. Angew. Chem. Int. Ed. 2004. 13. 6689. (c) Park. H.: Cho. C.-W.: Krische, M. J. d. Org. Chent. 2006. 71.7892. (d) Zhang. T.-Z.: Dai. L.-X.: Hou. X.L. Tetrahedron: Asymetry 2007. 18. 1990. (e) Jiang. Y.Q.: Shi. Y.-L.: Shi. M. J. Ant. Chem. Soc. 2008. 130.7202.
5. (a) Fujita, M.: Nakao, Y.; Matsunaga. S.: Seiki. M.: Itoh, Y;: Yamashita. J.; van Soest. R. W. M.: Fusetani, N. J. Am. Chem. Soc. 2003, 125, 15700. (b) Grube. A.; Köck, M. Org. Lett. 2006. 8.4675.
6. (a) Fürstner. A.: Szillat. H.: Gabor. B.: Mynott. R. J. Am. Chent. Soc. 1998. 120. 8305. (b) Thompson. R. B. EASEB J. 2001 . 15. 1671.
7. Navak, P.: Müller, K.' Santhanam, K. S. V.: Haas. O. Chem. Rev 1997. 97, 207. (b) Guernion, N. J. L.; Hayes, W. Cwr: Org. Chem. 2004. 8. 637.

[^0]: ${ }^{a}$ Procedure: To a reaction vessel charged with $1\left(0.5 \mathrm{mmol}, 100 \mathrm{~mol}{ }^{6}{ }^{6}\right)$. NuH ($1.0 \mathrm{mmol} .200 \mathrm{~mol}^{\circ} \cdot 0$), and catalest ($0.1 \mathrm{mmol}, 20 \mathrm{~mol}{ }^{\circ} .0$) was added solvent $(5.0 \mathrm{~mL}, 0.1 \mathrm{M})$. The reaction was allowed to stir tor 12 h . at which point the reaction mixture was evaporated onto silica gel and the product was isolated by silica gel chromatography. "Not detected.

