References
- Szejti, J. Chem. Rev. 1998, 98, 1743-1754 https://doi.org/10.1021/cr970022c
- Dentuto, P. L.; Catucci, L.; Cosma, P.; Fini, P.; Agostiano, A.; D'Accolti, L.; Trevithick-Sutton, C. C.; Foote, C. S. J. Phys. Chem. B 2005, 109, 1313-1317 https://doi.org/10.1021/jp047132p
- Zhao, Y.;Yang, Z. M.; Li, Z. Y.; Li, B. Y.; A, F.; Bi, X. J. Chin. J. Inorg. Chem. 2006, 22, 679-684
- Zhao, Y.; Liu, X. Q.; Zhao, Y.; Liu, P.; Li, C. Chin. J. Anal. Chem. 2006, 34, 959-962
- Ali, S. M.; Asmat, F.; Koketsu, M. Bull. Korean Chem. Soc. 2006, 27, 1397-1400 https://doi.org/10.5012/bkcs.2006.27.9.1397
- Michels, J. J.; Huskens, J.; Reinhoudt, D. N. J. Am. Chem. Soc. 2002, 124, 2056-2064 https://doi.org/10.1021/ja017025y
- De, J. M. R.; Engbersen, J. F. J.; Huskens, J.; Reinhoudt, D. N. Chem. Eur. J. 2000, 6, 4034-4040 https://doi.org/10.1002/1521-3765(20001103)6:21<4034::AID-CHEM4034>3.0.CO;2-3
- Liu, Y.; Yang, Y. W.; Chen, Y.; Ding, F. Bioorgan. Med. Chem. 2005, 13, 963-971 https://doi.org/10.1016/j.bmc.2004.11.042
- Liu, Y.; Chen, Y. Accounts Chem. Res. 2006, 39, 681-691 https://doi.org/10.1021/ar0502275
- Breslow, R.; Dong, S. D. Chem. Rev. 1998, 98, 1997-2012 https://doi.org/10.1021/cr970011j
- Zhao, Y.; Yang, Z. M.; Zhu, H. Y.; Gu, J.; Wang, Y. F. Acta Phys.-Chim. Sin. 2007, 23, 394-398
- Petter, R. C.; Salek, J. S.; Sikorski, C. T.; Kumaravel, G.; Lin, F. T. J. Am. Chem. Soc. 1990, 112, 3860-3868 https://doi.org/10.1021/ja00166a021
- Connors, K. A. Chem. Rev. 1997, 97, 1325-1357 https://doi.org/10.1021/cr960371r
- Park, K. K.; Kim, Y. S.; Jung, H. K.; Song, H. E.; Park, J. W. Bull. Korean Chem. Soc. 2000, 21, 1119-1124 https://doi.org/10.1007/BF02719483
- Kajtar, M.; Horvath-Toro, C.; Kuthi, E.; Szejtli, J. Acta Chim. Acad. Sci. Hung. 1982, 110, 327-355
- Harata, K.; Uedaira, H. Bull. Chem. Soc. Jpn. 1975, 48, 375-378 https://doi.org/10.1246/bcsj.48.375
- Fraiji, E. K.; Cregan, T. R.; Werner, T. C. Appl. Spectrosc. 1994, 48, 79-84 https://doi.org/10.1366/0003702944027624
Cited by
- Spectrophotometric study of the selective binding behavior of aliphatic oligopeptides by bridged bis(β-cyclodextrin) linked by a 4,4′-diaminodiphenyl disulfide tether vol.88, pp.12, 2010, https://doi.org/10.1139/V10-148
- Synthesis of Novel Bis(β-cyclodextrin)s Linked with Glycol and Their Inclusion Complexation with Organic Dyes vol.93, pp.6, 2010, https://doi.org/10.1002/hlca.200900345
- Selective binding behavior of nonaromatic oligopeptides by aromatic diamino-bridged bis(β-cyclodextrin) vol.140, pp.11, 2009, https://doi.org/10.1007/s00706-009-0180-0
- Molecular recognition of aliphatic oligopeptides by aromatic diamine-bridged bis(β-cyclodextrin) vol.35, pp.5, 2009, https://doi.org/10.1007/s11164-009-0064-2
- Fluorescence Sensing and Selective Binding of a Novel 4,4′-Sulfonyldianiline-Bridged Bis(β-cyclodextrin) for Bile Salts vol.93, pp.5, 2010, https://doi.org/10.1002/hlca.200900327
- Aromatic Diamino-bridged Bis(β-cyclodextrin) as Fluorescent Sensor for the Molecular Recognition of Bile Salts vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2119
- Aryl Azide-Based Photografting of β-Cyclodextrin onto Cellulose Diacetate Fibers vol.30, pp.8, 2008, https://doi.org/10.5012/bkcs.2009.30.8.1851
- Molecular selective binding of aliphatic oligopeptides by bridged bis(β-cyclodextrin)s with aromatic diamine linkers vol.930, pp.1, 2008, https://doi.org/10.1016/j.molstruc.2009.04.040
- pH-sensitive nanocarriers for Ganoderma applanatum polysaccharide release via host-guest interactions vol.53, pp.11, 2018, https://doi.org/10.1007/s10853-018-2091-0