DOI QR코드

DOI QR Code

Binding Affinities of Carbohydrate-Conjugated Chlorins for Galectin-3

  • Park, Young K. (PDT Research Institute, Department of Nano System Engineering, Inje University) ;
  • Bold, Bayarmaa (PDT Research Institute, Department of Nano System Engineering, Inje University) ;
  • Cui, Bing Cun (PDT Research Institute, Department of Nano System Engineering, Inje University) ;
  • Bai, Jin Quan (PDT Research Institute, Department of Nano System Engineering, Inje University) ;
  • Lee, Woo-Kyoung (PDT Research Institute, Department of Nano System Engineering, Inje University) ;
  • Shim, Young-Key (PDT Research Institute, Department of Nano System Engineering, Inje University)
  • Published : 2008.01.20

Abstract

Carbohydrate-conjugated chlorins were synthesized for use as biosensors for the detection of the galectin-3 cancer marker. We used ELISA, SDS-gel electrophoresis, and Bradford assays to examine the binding of galectins to d-(+)-galactose- and b-lactose-conjugated chlorins. The binding affinities of these conjugated chlorins for galectin-3 were quantified using fluorescence spectroscopy. The fluorescence emission of the carbohydrate-conjugated chlorins decreased as the amount of galectin-3 in the binding reaction increased over a limited concentration range, indicating that carbohydrate-conjugated chlorins are potentially useful fluorescence biosensors for the galectin-3 cancer marker.

Keywords

References

  1. Califice, S.; Castronovo, V.; van den Brule, F. Int. J. Oncol. 2004, 25, 983
  2. Liu, F.-T.; Rabinovisch, G. A. Nat. Rev. Cancer 2005, 5, 29 https://doi.org/10.1038/nrc1527
  3. Nakahara, S.; Oka, N.; Raz, A. Apoptosis 2005, 10, 267 https://doi.org/10.1007/s10495-005-0801-y
  4. Glinsky, V. V.; Glinsky, G. V.; Rittenhouse-Olson, K.; Huflejt, M. E.; Glinskii, O. V.; Deutscher, S. L.; Quin, T. P. Cancer Res. 2001, 61, 4851
  5. Nangia-Makker, P.; Honjo, Y.; Sarvis, R.; Akahani, S.; Hogan, V.; Pienta, K. J.; Raz, A. Am. J. Pathol. 2000, 156, 899 https://doi.org/10.1016/S0002-9440(10)64959-0
  6. Rabinovich, G. A.; Toscano, M. A.; Ilarregui, J. M.; Rubinstein, N. Glycoconjugate J. 2004, 19, 565 https://doi.org/10.1023/B:GLYC.0000014087.41914.72
  7. Pieters, R. J. ChembioChem 2006, 7, 721 https://doi.org/10.1002/cbic.200600011
  8. Leffler, H. Results Probl. Cell Differ. 2001, 33, 57 https://doi.org/10.1007/978-3-540-46410-5_4
  9. Hirabayashi, J.; Hashidate, T.; Arata, Y.; Nishi, N.; Nakamura, T.; Hirashima, M.; Urashima, T.; Oka, T.; Futai, M.; Muller, W. G. E.; Yagi, F.; Kasai, K. Biochim. Biophys. Acta 2002, 1572, 232 https://doi.org/10.1016/S0304-4165(02)00311-2
  10. Ortega, N.; Behonick, D. J.; Cooper, C. C.; Werb, Z. Mol. Biol. Cell 2005, 16, 3028 https://doi.org/10.1091/mbc.E04-12-1119
  11. Bidon, N.; Brichory, F.; Hanash, S.; Bourguet, P.; Dazord, L.; Le Pennec, J. P. Gene 2001, 274, 253 https://doi.org/10.1016/S0378-1119(01)00598-4
  12. Rabinovich, G. A.; Rubinstein, N.; Fainboim, L. J. Leukocyte Biology 2002, 71, 741
  13. Levy, Y.; Arbel-Goren, R.; Hadari, Y. R.; Eshhar, S.; Ronen, D.; Elhanany, E.; Geiger, B. J. Biol. Chem. 2001, 17, 31285
  14. Hadari, Y. R.; Arbel-Goren, R.; Levy, Y.; Amsterdam, A.; Alon, R.; Zakut, R.; Zick, Y. J. Cell Sci. 2000, 113, 2385
  15. Camby, I.; Belot, N.; Rorive, S.; Lefranc, F.; Maurage, C.-A.; Lahm, H.; Kaltner, H. Brain Pathol. 2001, 11, 12 https://doi.org/10.1111/j.1750-3639.2001.tb00377.x
  16. Danguy, A.; Camby, I.; Kiss, R. Biochim. Biophys. Acta 2002, 1572, 285 https://doi.org/10.1016/S0304-4165(02)00315-X
  17. Volante, M.; Bozzalla-Cassione, F.; Orlandi, F.; Papotti, M. Virchows Arch. 2004, 444, 309 https://doi.org/10.1007/s00428-004-0993-5
  18. Zheng, G.; Graham, A.; Shibata, M.; Missert, J. R.; Oseroff, A. R.; Dougherty, T. J.; Pandey, R. K. J. Org. Chem. 2001, 66, 8709 https://doi.org/10.1021/jo0105080
  19. Smith, K. M.; Goff, D. A.; Simpson, D. J. J. Org. Chem. Soc. 1985, 107, 4946
  20. Pallenberg, A. J.; Dobhal, M. P.; Pandey, R. K. Org. Proc. Res. Dev. 2004, 8(2), 287 https://doi.org/10.1021/op034160h
  21. Waseilewski, M. R.; Svec, W. A. J. Org. Chem. 1980, 45, 1969 https://doi.org/10.1021/jo01298a043
  22. Roeder, B. J. Photochem. Photobio. 1990, 5, 519 https://doi.org/10.1016/1011-1344(90)85063-3

Cited by

  1. d-(+)-Galactose-Conjugated Single-Walled Carbon Nanotubes as New Chemical Probes for Electrochemical Biosensors for the Cancer Marker Galectin-3 vol.12, pp.12, 2011, https://doi.org/10.3390/ijms12052946
  2. Carbohydrate-Porphyrin Conjugates with Two-Photon Absorption Properties as Potential Photosensitizing Agents for Photodynamic Therapy vol.2011, pp.7, 2011, https://doi.org/10.1002/ejoc.201001209
  3. Galactodendritic Phthalocyanine Targets Carbohydrate-Binding Proteins Enhancing Photodynamic Therapy vol.9, pp.4, 2014, https://doi.org/10.1371/journal.pone.0095529
  4. Lactose esters: synthesis and biotechnological applications vol.38, pp.2, 2018, https://doi.org/10.1080/07388551.2017.1332571
  5. Efficient Synthesis and in vitro PDT Effect of Purpurin-18-N-Aminoimides vol.31, pp.11, 2010, https://doi.org/10.5012/bkcs.2010.31.11.3313
  6. "Click chemistry" in the synthesis of the first glycoconjugates of bacteriochlorin series vol.16, pp.10, 2012, https://doi.org/10.1142/s1088424612500848
  7. Synthesis of chlorophyll a glycoconjugates using olefin cross-metathesis vol.22, pp.3, 2012, https://doi.org/10.1016/j.mencom.2012.05.016
  8. C-O, C-S, C-N, and C-C Bond Formation at the Periphery of the Macrocycle during Chemical Modification of Phytochlorins: Key Methods and Synthetic Applications vol.89, pp.12, 2019, https://doi.org/10.1134/s1070363219120430
  9. C-O, C-S, C-N, and C-C Bond Formation at the Periphery of the Macrocycle during Chemical Modification of Phytochlorins: Key Methods and Synthetic Applications vol.89, pp.12, 2019, https://doi.org/10.1134/s1070363219120430