Synthesis of Cyclic Compounds Having exo-Methylene Groups through the Diels-Alder Reactions of Vinyl Allenes Obtained from Propargyl Bromide and Indium

Kooyeon Lee and Phil Ho Lee ${ }^{\circ}$
Deparment of Chemistry and Institute for Basic Science, Kangwon National Lhwersitv, Chunchon 200-701, Korea
E-mail: phleeakangwon.ackr
Received August 10, 2007

Key Words: Diels-Alder reaction. Indium, exo-Methylene compound. Propargyl bromide. Vinyl allene

Because allene is a very interesting compound having a hybrid character of C-C double and triple bond, vinyl allenes have been recognized as versatile building blocks in organic synthesis. ${ }^{1}$ In particular, vinyl allenes take part in not only the Diels-Alder reaction ${ }^{2}$ as the 1.3 -diene moiety but also transition metal-catalyzed organic reactions, ${ }^{3}$ affording efficient synthetic methods for complex ring compounds. However. because it is not easy to effectively prepare a variety of vinyl allenes, its application to organic reactions has been limited despite the potential of vinyl allenes in organic synthesis. Although vinyl allenes were used in the DielsAlder reactions. development of synthetic method of cyclic compounds having exo-methy lene group is still required due to its utility in synthesis of natural products with biological activities. ${ }^{+}$Recently, we have demonstrated that allenylindiums generated in situ from indiun and propargyl bromides are effective cross-coupling partners in palladiumcatalyzed cross-coupling reactions to produce substituted allenes in excellent yields. ${ }^{5}$ In continuation of our studies directed toward preparative method of vinyl allenes with allenyindium. we describe herein the Diels-Alder reaction of vinyl allenes possessing 3.4- and 4,5-disubstituents and ketone group with a variety of dienophiles to give cyclic compounds having exo-methylene group (Scheme 1).
First, 3-methyl-4-phenyl-1,2.4-pentatriene (1a) as vinyl allene was prepared from the reaction of α-bromostyrene with allenylindium obtained from indiun and 1-bromo-2butyne and then. the Diels-Alder reactions with dienophiles were examined to obtain cyclic compounds having exomethylene group. The results are summarized in Table 1. Reaction of 1a with maleic anhydride (2a) produced the Diels-Alder adduct 3 a in 96% yield in toluene at $100^{\circ} \mathrm{C}$ for

Scheme 1. Synthesis of cyclic compounds having exo-methylene group trom vinyl allenes and dienophiles.

3 h (entry 1). Also. 3-ethyl-4-phenyl-1.2,4-pentatriene (1b) reacted with a variety of dienophiles such as $\mathbf{2 a}, \mathrm{N}$-phenyl maleimide (2b). dimethyl maleate (2c). and 1,4 -naphthoquinone ($\mathbf{2 d}$), producing the desired products ($\mathbf{3 b}, \mathbf{3 c} .3 \mathbf{3 d}$, and 3 e) in good to excellent yields in toluene (entries $2-5$). Stimulated by these results, tandem cross-coupling reaction of α-bromostyrene with l-bromo-2-pentyne and indium (l equiv.) in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($4 \mathrm{~mol} \%$) in DMF followed by Diels-Alder reaction with $2 \mathbf{a}$ was attempted to obtain 3b in one-pot procedure. However. the desired product $\mathbf{3 b}$ was produced in 7% yield in DMF. Although the cross-coupling product $\mathbf{1 b}$ was produced smoothly. the following Diels-Alder reaction did not proceed effectively. Treatment of $\mathbf{1 b}$ with $\mathbf{2 a}$ did not proceed in THF and DMF. In addition, hetero Diels-Alder reactions were tested. Subjecting 1b to ethyl glyoxylate (2e) provided exclusively 3.6 -dilydro- 2 H -pyran (31) having exo-metlylene group in 80% yield (entry 6). No constitutional isomeric product is fomed in this reaction. indicating that the electron-rich central carbon of vinyl allene preferentially adds to the more electron-deficient carbon of dienophile. Although compound 1b reacted with ethyl acrylate (20) to afford mixture of

Figure 1. Vnyl allenes.

2a

2g

Figure 2. Dienophiles.

Table 1. $[4+2]$ Cycloaddition reaction of vinyl allenes with dienophiles ${ }^{\prime \prime}$
Entry Reactants $\mathrm{Tim}(\mathbf{c}$
"Reactions were carried out with vinyl allene (1 equiv.) and dienophile (1 equiv.) unless otherwise noted. Reaction conditions: Toluene ($100^{\circ} \mathrm{C}$) for entries 1-7 and 11-12. $\mathrm{CH}_{2} \mathrm{Cl}_{-}$($25^{\circ} \mathrm{C}$) for entries 8 and $9 . \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(65^{\circ} \mathrm{C}\right)$ for entry 10. "Isolated vields. "Dienophile (3 equiv.) was used. "Dienophile (30 equiv.) was used. ${ }^{e}$ Dienophile (5 equiv.) was used. ${ }^{\prime}$ Regioisomeric ratio. Ethyl 4-ethyl-5-methylene-3-phenylcyclohes-3-enecarbosylate was produced in major. ${ }^{8}$ Toluene $\left(25^{\circ} \mathrm{C}\right)$ was used. ${ }^{1} \mathrm{CH}_{3} \mathrm{Cl}_{2}\left(25^{\circ} \mathrm{C}\right)$ was used. 'Dienophile (2 equiv.) was used. ${ }^{~}$ Diastereomeric ratio.

4a 65\%

4b 82\%

4c 95\%

Figure 3. Benzene derivatives from Diels-Alder reaction and aromatization.
regioisomeric products in 76% yield, ethyl 4-ethyl-5-methyl-ene-3-phenylcyclohex-3-enecarboxylate was produced in major (entry 7). Although exposure of vinyl allene 1c to 2a gave exo-methylenecyclohexene derivative 3 h in 20% yield in toluene, adduct $\mathbf{3 h}$ was produced in 77% yield in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 13 h (entry 8). In the case of $\mathbf{2 b}$, $[4+2]$ cycloaddition adduct $3 i$ was obtained in 83% yield in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 13 h (entry 9). Reaction of 1c with 2 e furnished pyran 3 j having exo-methylene group in 87% yield with complete regioselectivity (entry 10). Vninyl allenes ($\mathbf{1 d}$ and 1e) obtained from vinyl triflates and allenylindium were treated with $\mathbf{2 b}$ to produce the desired products (3 k and 31) in $92 \%(\mathrm{dr}=1: 1.5$) and 74% yields, respectively (entries 11 and 12). Dienophiles having triple bond such as ethyl propiolate (2g) and DMAD (2h) were used to Diels-Alder reaction to give rise to multi-substituted benzene derivatives. Reaction of $\mathbf{1 b}$ with $\mathbf{2 g}$ produced selectively ethyl 4-ethyl-3-methyl-5-phenyl benzoate (4 a) in 65% yield in toluene at $100^{\circ} \mathrm{C}$ for 20 h . Compound 1 a and 1c were treated with DMAD to afford 4 b and tc in 82% (toluene, $100^{\circ} \mathrm{C} .4 \mathrm{~h}$) and $95 \%\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} .65^{\circ} \mathrm{C} .15 \mathrm{~h}\right)$ yields, respectively. through Diels-Alder reaction followed by aromatization.

In summary. we have shown that cyclic compounds having exo-methylene group were selectively produced through the Diels-Alder reaction of vinyl allenes obtained from propargyl bromide and indiun with a variety of symmetric and unsymmetric dienophiles in good to excellent yields. Also. dienophiles having triple bond gave multi-substituted benzene derivatives through Diels-Alder reaction followed by aromatization.

Experimental Section

5-Methyl-4-methylene-6-phenyl-3a,4,7,7a-tetrahydroiso-benzofuran-1,3-dione (3a): A mixture of 3-methyl-4-phenyl-1.2.4-pentatriene (1a) (46.8 mg .0 .3 mmol) and maleic anhydride (29.4 mg .0 .3 mmol) in toluene (1.0 mL) was heated at $100^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was cooling to room temperature and then quenched with NaHCO_{3} (sat. aq.). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($20 \mathrm{~mL} \times 3$) and the combined organics were washed with brine. dried with MgSO_{4} and concentrated. Recrystallization using methy lene chloride and n-hexane gave 3a ($74.0 \mathrm{mg} .96 \%$) as a white solid. ${ }^{\text {'H N NR (}}$ (300 $\mathrm{MHz}, \mathrm{CDCl}_{3} .25^{\circ} \mathrm{C}, \mathrm{TMS}$) $\delta 7.40-7.28$ (m. 3 H). 7.18-7.15 $(\mathrm{m}, 2 \mathrm{H}) .5 .52(\mathrm{~s} .1 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~d} . J=9.34 \mathrm{~Hz} .1 \mathrm{H})$, 3.56 (ddd $J=9.58 .6 .66 .3 .19 \mathrm{~Hz} .1 \mathrm{H}$). 2.94 (dd. $J=16.92$.

Votes
$2.80 \mathrm{~Hz}, \mathrm{IH}) .2 .78-2.66(\mathrm{~m}, \mathrm{IH}), 1.82(\mathrm{~d} . J=1.54 \mathrm{~Hz} .3 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3$. 171.3, 141.4. 135.5. 135.4. 129.6. 128.4. 128.1, 127.4. 116.2, 46.2, 40.0. 29.4. 17.0: IR (film) 2951. I731. 1434. 1241. 1060.912.818, 759 cm^{-1}, m.p. 108-109 ${ }^{\circ} \mathrm{C}$, HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{M}^{+}$ 254.0943. found 254.0945.

5-Ethyl-t-methylene-6-phenyl-3a,4,7,7a-tetrahydroiso-benzofuran-1,3-dione (3b): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} .25\right.$ ${ }^{\circ} \mathrm{C}$. TMS) $\delta 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, \mathrm{IH}) .7 .14-7.11$ $(\mathrm{m}, \mathrm{IH}) .5 .50(\mathrm{~d}, J=0.7 \mathrm{~Hz} .1 \mathrm{H}), 5.45(\mathrm{~s} .1 \mathrm{H}), 4.04(\mathrm{~d} . J=$ $9.51 \mathrm{~Hz} . \mathrm{IH}$). 3.56 (ddd. $J=9.39,6.56,2.70 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87 (dd. $J=16.24,2.81 \mathrm{~Hz} . I H$). 2.67 (ddd. $J=16.25,6.56 .2 .23$ $\mathrm{Hz}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m} .1 \mathrm{H}), 2.23-2.14(\mathrm{~m} .1 \mathrm{H}) .0 .88(\mathrm{t}, J=$ $7.40 \mathrm{~Hz}, 3 \mathrm{H}$): ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta 173.5 .171 .3$. 141.3. 137.0, 135.0. 134.4. 128.5, 127.6, 127.3. 116.0, 47.7. $40.3,29.8 .22 .9 .13 .3:$ IR (film) $1844,1781,1700.904 \mathrm{~cm}^{-1}$. m.p. $135-136^{\circ} \mathrm{C}$: MS (EI) mz 268 (M^{-}).

5-Ethyl-+-methylene-2,6-diphenyl-3a,4,7,7a-tetrahydro-isoindole-1,3-dione (3c): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}, 25$ ${ }^{\circ} \mathrm{C}$. TMS) $\delta 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}) .7 .40-7.32(\mathrm{~m} .3 \mathrm{H}), 7.27-7.24$ $(\mathrm{m}, 3 \mathrm{H}) .7 .17-7.14(\mathrm{~m} .2 \mathrm{H}), 5.50(\mathrm{~s} .1 \mathrm{H}), 5.40(\mathrm{~s} .1 \mathrm{H}), 3.93$ $(\mathrm{d}, J=8.87 \mathrm{~Hz} . \mathrm{IH}) .3 .45-3.4 \mathrm{I}(\mathrm{m} . \mathrm{IH}) .3 .00(\mathrm{dd}, J=15.73$. $2.27 \mathrm{~Hz} .1 \mathrm{H}) .2 .67(\mathrm{ddd}, J=15.70 .6 .39 .2 .37 \mathrm{~Hz}, \mathrm{IH}) .2 .48-$ $2.39(\mathrm{~m} . \mathrm{IH}), 2.26-2.17(\mathrm{~m} .1 \mathrm{H}) .0 .85(\mathrm{t}, J=7.25 \mathrm{~Hz}, 3 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 178.5,176.3 .141 .7,137.2$. 137.1. 134.7. 132.1, 129.2, 128.6. 128.3, 127.9, 127.0. 126.3. 115.1. 48.4. 39.9. 30.4. 23.0, 13.6: IR (film) 1781. 1715. 1381. $1175 \mathrm{~cm}^{-1}:$ m.p. $141-142^{\circ} \mathrm{C}$; MS (EI) mz 343 $\left(\mathrm{M}^{+}\right)$.

Dimethyl 4-ethyl-3-methylene-5-phenyl-cyclohex-+-ene-1,2-dicarboxlate (3d): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} .25^{\circ} \mathrm{C}$. TMS) $\delta 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}) .7 .28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.12(\mathrm{~m}$. $2 \mathrm{H}), 5.30(\mathrm{~s} .1 \mathrm{H}) .5 .23(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=3.56 \mathrm{~Hz} . \mathrm{IH})$. $3.72(\mathrm{~s}, 3 \mathrm{H}) .3 .69(\mathrm{~s}, 3 \mathrm{H}) .3 .05-2.94(\mathrm{~m} .2 \mathrm{H}), 2.69-2.58(\mathrm{~m}$. $1 \mathrm{H}), 2.21-2.05(\mathrm{~m} .2 \mathrm{H}) .0 .91(\mathrm{t} . J=7.43 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.5 .172 .1 .142 .9,139.5,137.2$. 133.0. 128.3. 128.2. 127.7, 126.7. 113.9, 52.0, 48.6. 41.1. 32.3.22.1. 13.7: IR (film) 2952. 1739. $1205 \mathrm{~cm}^{-1}$; MS (EI) $m=314\left(\mathrm{M}^{-}\right)$.
2-Ethyl-1-methylene-3-phenyl-1,4,4a,9a-tetrahydroanthraquinone (3e): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$. TMS) $\delta 8.10-8.07(\mathrm{~m}, 1 \mathrm{H}) .8 .05-8.03(\mathrm{~m} .1 \mathrm{H}), 7.78-7.72(\mathrm{~m}$. $2 \mathrm{H}), 7.38-7.33(\mathrm{~m} .2 \mathrm{H}), 7.29-7.25(\mathrm{~m} .3 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H})$. 4.88 (s. 1H). 4.11 (dt. $J=3.61 .1 .41 \mathrm{~Hz} .1 \mathrm{H}) .3 .58$ (q. $J=$ $5.56 \mathrm{~Hz} .1 \mathrm{H}) .2 .95$ (dd. $J=18.08 .5 .97 \mathrm{~Hz} .1 \mathrm{H}) 2.61$ (dd. $J=$ 18.06. 5.45 Hz .1 H$), 2.17-2.11(\mathrm{~m} .2 \mathrm{H}) .0 .92(\mathrm{t} . J=7.45 \mathrm{~Hz}$. $3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.0. 196.9. 142.9 . 137.1. 136.4. 135.1, 134.4, 134.3. 134.1, 133.8, 128.3. 127.7. 126.9. 126.8. 127.7. 113.7, 54.8, 47.8, 32.8. 22.1. 14.0: IR (film) $3060.1695,1594.703 \mathrm{~cm}^{-1}$; m.p. 101-102 ${ }^{\circ} \mathrm{C}$: MS (EI) $m z 328\left(\mathrm{M}^{+}\right)$.
Ethyl +-ethyl-3-methylene-5-phenyl-3,6-dihydro-2H-pyran-2-carboxylate (3f): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25$ ${ }^{\circ} \mathrm{C}$. TMS) $87.38-7.28(\mathrm{~m}, 3 \mathrm{H}) .7 .18-7.15(\mathrm{~m}, 2 \mathrm{H}) .5 .32(\mathrm{~s}$. $1 \mathrm{H}), 5.15(\mathrm{~s} . \mathrm{IH}), 4.88(\mathrm{~s} . \mathrm{IH}) .4 .71$ (d. $J=17.13 \mathrm{~Hz} . \mathrm{IH})$. $4.37(\mathrm{~d}, J=17.13 \mathrm{~Hz} .1 \mathrm{H}) .4 .28(\mathrm{q} . J=7.11 \mathrm{~Hz}, 2 \mathrm{H}) .2 .19$ (q. $J=7.29 \mathrm{~Hz} .2 \mathrm{H}$) , $1.32(\mathrm{t} . J=7.17 \mathrm{~Hz}, 3 \mathrm{H}) .0 .97(\mathrm{t} . J=$
$7.47 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 170.5,138.1$, 136.0, 135.6, 131.3, 128.4, 128.3, 127.5, 111.1. 68.0, 61.2, $21.2,143.13 .8$: IR (film) 2975, 1739. 1609. 1465, 1130 cm^{-1}; MS (EI) $m z 199\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Et}\right)$.

Ethyl 4-ethyl-5-methylene-3-phenylcyclohex-3-enecarboxylate (3 g , major compound): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CDCl}_{3} .25^{\circ} \mathrm{C}$, TMS) $\delta 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m} . \mathrm{IH}), 7.16(\mathrm{~d} . J$ $=6.83 \mathrm{~Hz} .2 \mathrm{H}), 5.09(\mathrm{~s}, \mathrm{lH}) .4 .97(\mathrm{~s}, \mathrm{IH}) .4 .14(\mathrm{q}, J=7.11$ Hz. 2 H). 2.83-2.77 (m, IH). 2.7 I (dd. $J=14.1,3.46 \mathrm{~Hz}, 1 \mathrm{H})$, $2.65-2.54(\mathrm{~m}, 3 \mathrm{H}), 2.18-2.07(\mathrm{~m} .2 \mathrm{H}) .1 .25(\mathrm{t} . J=7.16 \mathrm{~Hz}$, $3 \mathrm{H}) .0 .93(\mathrm{t}, J=7.4 \mathrm{~Hz} .3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} . \mathrm{CDCl}_{3}$) δ $174.8,143.4,141.0 .136 .6 .134 .6,128.2,127.7$. 126.6. 110.1, 60.4. 40.2, 35.8. 35.1. 21.9, 14.3. 14.2. IR (film) 2932. 1732, 1442. $1178,1038,884,761,701 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{EI})$ $m z 270\left(\mathrm{M}^{-}\right)$.

Ethyl 3-ethyl-2-methylene-4-phenylcyclohex-3-enecarboxylate (3g, minor compound): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CDCl}_{3} .25^{\circ} \mathrm{C}, \mathrm{TMS}$) $\delta 7.33$ (t. $J=7.38 \mathrm{~Hz} .2 \mathrm{H}$), 7.24 (m, $1 \mathrm{H}) .7 .12(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~m} .2 \mathrm{H})$, $3.40(\mathrm{t} . J=5.18 \mathrm{~Hz} . \mathrm{lH}) .2 .49(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{dt}, J=18.4$, $5.20 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.12(\mathrm{~m} .3 \mathrm{H}), 1.98(\mathrm{~m} .1 \mathrm{H}) .1 .28(\mathrm{t}, J=$ 7.10 Hz .3 H), 0.95 (t. $J=7.44 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.9,143.8 .140 .5,137.9 .133 .7,128.1$, $127.6,126.4,111.1 .60 .4,47.5,31.1,25.7,22.2$. 14.3. 13.9; IR (film) 2931, 1732. 1605. 1443, 1373. 1308, 1258, 1155, $1040.759 \mathrm{~cm}^{-1}$: MS (EI) $m z 270\left(\mathrm{M}^{+}\right)$.

5-Ethyl-4-methylene-3a,7,8,9,9a,9b-hexahydro-4 H -naphtho[1,2-c]furan-1,3,6-trione (3h): ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS) $\delta 5.67(\mathrm{~s} .1 \mathrm{H}), 5.63(\mathrm{~s} . \mathrm{IH}) .4 .02$ (d. $J=9.52 \mathrm{~Hz}, \mathrm{IH}) .3 .46(\mathrm{dd}, J=9.50,5.15 \mathrm{~Hz}, \mathrm{IH}) .3 .15$ (octet, $J=7.27 .12 .02,14.68 \mathrm{~Hz} .1 \mathrm{H}$). $2.68-2.62(\mathrm{~m} .1 \mathrm{H})$, $2.57-2.48(\mathrm{~m}, \mathrm{lH}), 2.46-2.35(\mathrm{~m}, \mathrm{lH}), 2.33-2.03(\mathrm{~m} .2 \mathrm{H})$, $2.09-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.63(\mathrm{~m} .1 \mathrm{H}) .1 .00(\mathrm{t} . J=7.39 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 199.2,171.0,170.4$, 153.3, 137.6. 131.2. 121.0. 49.7, 44.7. 40.0. 37.2. 25.8. 25.3, 21.2, 13.1: IR (film) $1885.1780,1662,1549,1200 \mathrm{~cm}^{-1}$. m.p. $156^{\circ} \mathrm{C} ; \mathrm{MS}(\mathrm{EI}) m z 260\left(\mathrm{M}^{+}\right)$.

5-Ethyl-4-methylene-2-phenyl-3a,7,8,9,9a,9b-hexahydro$4 H$-benzo $e]$ isoindole-1,3,6-trione (3i): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3} .25^{\circ} \mathrm{C}, \mathrm{TMS}\right) \delta 7.65-7.32(\mathrm{~m}, 3 \mathrm{H}) .7 .15-7.13$ $(\mathrm{m} .2 \mathrm{H}) .5 .63(\mathrm{~s} .1 \mathrm{H}) .5 .62(\mathrm{~s}, 1 \mathrm{H}) .3 .90(\mathrm{~d} . J=9.04 \mathrm{~Hz} .1 \mathrm{H})$. 3.46 (dd. $J=4.92 .8 .87 \mathrm{~Hz}, 1 \mathrm{H}$). 3.19 (octet. $J=7.29 .11 .72$. $14.63 \mathrm{~Hz}, 1 \mathrm{H}$). $2.72-2.67(\mathrm{~m} .1 \mathrm{H}) .2 .54-2.33(\mathrm{~m} .3 \mathrm{H}) .2 .28-$ $2.17(\mathrm{~m} .1 \mathrm{H}) .2 .08-1.99(\mathrm{~m} .2 \mathrm{H}) .1 .76-1.62(\mathrm{~m} .1 \mathrm{H}) .1 .00(\mathrm{t}$. $J=7.33 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta 199.9$, 176.4, 175.0, 153.5. 139.7. 131.7, 131.1, 129.2. 128.7. $126.4,120.0,49.9,43.7 .40 .0,38.2,25.8,25.5,21.4,13.4$: IR (film) 1713. $1668,1498 \mathrm{~cm}^{-1}$. m.p. $160-161^{\circ} \mathrm{C}$: MS (EI) $m=335\left(\mathrm{M}^{-}\right)$.

Ethyl 4-ethyl-3-methylene-5-oxo-3,5,6,7,8,8a-hexahydro2 H -chromene-2-carboxylate (3j): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CDCl}_{3} .25^{\circ} \mathrm{C}$. TMS) $\delta 5.56(\mathrm{~s} . \mathrm{lH}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{t} . J=$ $1.53 \mathrm{~Hz}, \mathrm{lH}) .4 .42-4.30(\mathrm{~m} .3 \mathrm{H}) .2 .59-2.28(\mathrm{~m} .5 \mathrm{H}) .2 .07-$ $2.00(\mathrm{~m}, 1 \mathrm{H}) .1 .92-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.63(\mathrm{~m}, 1 \mathrm{H}) .1 .35(\mathrm{t}$. $J=7.10 \mathrm{~Hz}, 3 \mathrm{H}) .1 .13(\mathrm{t}, J=7.45 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.8,169.2,142.6 .137 .3,135.4,114.1$, $76.8,61.5,42.7,31.5 .21 .8$. 19.2. 14.4. 14.2: IR (film) 2940,
1735. 1685, 1457, $1192 \mathrm{~cm}^{-1}$. MS (EI) $m z 264\left(\mathrm{M}^{+}\right)$

8-tert-Butyl-4-methylene-2-phenyl-3a, $+, 6,7,8,9,9 \mathrm{a}, 9 \mathrm{~b}-$ octahydrobenzo[e]isoindole-1,3-dione (3 k , major compound): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3 .} 25^{\circ} \mathrm{C}, \mathrm{TMS}$) $\delta 7.44$ (t. $J=7.70 \mathrm{~Hz}, 2 \mathrm{H}) .7 .36(\mathrm{t}, J=7.47 \mathrm{~Hz} .1 \mathrm{H}), 7.23(\mathrm{~d} . J=7.56$ $\mathrm{Hz}, 2 \mathrm{H}) .6 .04(\mathrm{~s} .1 \mathrm{H}) .5 .30(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=$ $8.30 \mathrm{~Hz}, \mathrm{IH}) .3 .36(\mathrm{dd}, J=8.01 .6 .86 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~m}, \mathrm{IH})$. $2.37(\mathrm{~m}, \mathrm{IH}) .2 .25(\mathrm{~m}, \mathrm{IH}) .2 .02(\mathrm{td} . J=12.65,8.87 \mathrm{~Hz}$. $1 \mathrm{H}), 1.73(\mathrm{~m} .2 \mathrm{H}) .1 .52(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{qd}, J=12.48 .5 .41$ $\mathrm{Hz}, 1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.8,175.0$. 142.1. 133.0, 130.9. 128.0. 127.4, 125.3, 121.1. 113.5, 43.5. $42.2,41.4,32.3$. 31.1. 30.1. 26.0. 24.8, 21.5; IR (film) 3463. 2959. 2867, 2249, 1775. $1709 \mathrm{~cm}^{-1}$; MS (EI) mz $349\left(\mathrm{M}^{+}\right)$.

4-Methoxy-12-methylene-16-phenyl-6,7,8,12,13,1+-hexa-hydro-16-aza-cyclopenta[a]phenanthrene-15,17-dione (31): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}\right) \delta 7.41(\mathrm{~m}, 2 \mathrm{H})$. $7.33(\mathrm{~m} . \mathrm{IH}) .7 .23(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{t} . J=8.05 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ (d, $J=2.25 \mathrm{~Hz} . \mathrm{IH}) .6 .75(\mathrm{~d} . J=8.02 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s} .1 \mathrm{H})$. $5.35(\mathrm{~s} .1 \mathrm{H}), 3.92$ (d. $J=8.09 \mathrm{~Hz} .1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.50$ (dd. $J=8.07,5.44 \mathrm{~Hz}, \mathrm{IH}) .3 .27(\mathrm{td}, J=16.33 .3 .32 \mathrm{~Hz}$. $1 \mathrm{H}), 2.88(\mathrm{~m}, \mathrm{IH}) .2 .55(\mathrm{qd}, J=13.06,3.81 \mathrm{~Hz}, \mathrm{IH}) .2 .33$ $(\mathrm{m}, 1 \mathrm{H}), 2.13$ (m. 1H): ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 175.0. 174.8. $155.8,135.6,134.8$. 133.0, 130.9, 127.9. 127.3. 126.4, 125.5, 125.3. 121.1. 116.1. 114.7. 108.1, 54.5. $45.0,43.3,34.3,23.0 .21 .8$. IR (film) $2834,1710,1572$. 1499. 1387. $1261 \mathrm{~cm}^{-1}$: m.p. $189-190^{\circ} \mathrm{C}$: MS (EI) $m z 37 \mathrm{I}$ (M^{+})

Ethyl +ethyl-5-methyl-3-phenyl benzoate (4a): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}$) $\delta 7.84$ (d, $J=1.33$ $\mathrm{Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=1.69 \mathrm{~Hz}, 1 \mathrm{H}) .7 .46-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.30-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{q} . J=7.09 \mathrm{~Hz} .2 \mathrm{H}) .2 .60(\mathrm{q}, J=7.52 \mathrm{~Hz}$. $2 \mathrm{H}), 2.44(\mathrm{~s} .3 \mathrm{H}), 1.36(\mathrm{t}, J=7.18 \mathrm{~Hz} .3 \mathrm{H}), 0.99(\mathrm{t}, J=7.5 \mathrm{I}$ $\mathrm{Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,145.6$. 142.4 . 141.8. $136.6,130.5,129.2$. 129.0, 128.0, 127.3. 127.0. 60.8. 23.3, 19.7. 14.4. 14.1: IR (film) 2971. 2930, 1717, $1223 \mathrm{~cm}^{-1}$. MS (EI) $m z 268\left(\mathrm{M}^{+}\right)$.
Dimethyl 3,4-dimethyl-5-phenylphthalate (+b): A mixture of 3-methyl-4-phenyl-1.2.4-pentatriene (1a) (46.86 mg . $0.3 \mathrm{mmol})$ and DMAD (42.63 mg .0 .3 mmol) was heated in toluene $(1.0 \mathrm{~mL})$ at $100^{\circ} \mathrm{C}$ for 4 h . The reaction misture was quenched with NaHCO_{3} (sat. aq.). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$ and the combined organics were washed with water and brine, dried over MgSO_{4}, filtered. and concentrated under reduced pressure. It was purified by recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Hex}\right)$ to give $\mathbf{4 b}$ ($73.0 \mathrm{mg} .82 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$. TMS) δ $7.78(\mathrm{~s}, 1 \mathrm{H}) .7 .47-7.36(\mathrm{~m} .3 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~s}$. $3 \mathrm{H}), 3.86(\mathrm{~s} .3 \mathrm{H}) .2 .30(\mathrm{~s}, 3 \mathrm{H}) .2 .2 \mathrm{I}(\mathrm{s} .3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 170.5$. 166.1, 143.1. 141.0, 140.4, 134.6. 134.4. 129.2. 129.1, 128.2, 127.3, 124.3. 52.6, 52.3. 17.8.
17.1: IR (film) 1730. 1432, $1323 \mathrm{~cm}^{-1}$; m.p. $107-108^{\circ} \mathrm{C} ;$ MS (EI) $m z 298\left(\mathrm{M}^{+}\right)$
Dimethyl 4-ethyl-3-methyl-5-ox0-5,6,7,8-tetrahydro-naphthalene-1,2-dicarboxylate (4c): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CDCl}_{3} .25^{\circ} \mathrm{C}$. TMS) $\delta 3.90(\mathrm{~s} .3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) .2 .99(\mathrm{q}, J=$ $7.34 \mathrm{~Hz}, 2 \mathrm{H}) .2 .96(\mathrm{t} . J=6.26 \mathrm{~Hz} .2 \mathrm{H}) .2 .67(\mathrm{t}, J=6.75 \mathrm{~Hz}$, 2 H). $2.33(\mathrm{~s}, 3 \mathrm{H}$), 2.04 (quintet, $J=6.50 \mathrm{~Hz}, 2 \mathrm{H}$), $1.20(\mathrm{t} . J=$ 7.33 Hz .3 H): ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 200.1,169.0$, 168.1. 148.4. 141.1. 136.4. 133.7. 133.4, 128.5, 52.6. 52.5. 40.7. 28.1, 23.9. 22.3. 15.6, 14.1; IR (film) 2953, 2359. 1739. 1690. $1436 \mathrm{~cm}^{-1}$. MS (EI) mz $304\left(\mathrm{M}^{-}\right)$.

Acknowledgment. This work was supported by KOSEF through the National Research Lab. Program funded by the Ministry of Science and Technology (No. M10600000203$06 \mathrm{~J} 0000-20310$). by the Korea Science and Engmeering Foundation (KOSEF, R01-2006-000-11283-0), and by the CMDS at KAIST. The NMR and mass data were obtained from the central instrumental facility in Kangwon National University

References

1. (a) Patai, S.. Ed. The Chemisty of Ketenes. Allenes and Related Compomds. Wiley: New York. 1980. (b) The Chenismy of the Allenes: Landor. S. R.. Ed: Academic: London1. 1982. (c) Smadja. W. Chem. Rev. 1983. 83. 263. (d) Schuster. H. F.: Coppola. G. M. Allenes in Orgonic Synhesis; Wiley: New York, 1984. (e) Zimmer. R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000. 100, 3067. (t) Moden Allene Chemistry, Krause, N.. Hashmi. A. S. K. Eds.: Wiley-VCH: Weinheimn. 2004.
2. (a) Angelov. C. M.: Mondeshka. D. M.: Tancheva. I. N. Chem. Conmum. 1985. 647. (b) Reich. H. T.: Eiserhart. E. K.: Whipple. W. L.; Kelly. M. J. J. Am. Chem. Soc. 1988, 110. 6432. (c) Dulcere, J. P., Agati. V.: Faure. R. Chem. Commm. 1993. 270. (d) Spino, C.: Thibault. C.: Gingras, S. J. Org. Chem. 1998, 63, 5283. (e) Regás. D.: Atonso. M. M.: Rodríguez. M. L.: Palenzuela. J. A. J. Org. Chem. 2003. 68. 7845. (f) Regás. D.: Ruiz. J. M.: Afonso. M. M.: Palenzuela. J. A. J. Ong. Chen. 2006. 71.9153.
3. (a) Murakami, M.: Itami. K.: Ito, Y. Angew. Chem. Iht. Ed. 1995. 34. 2691. (b) Murakami. M.: Itami. K.; Ito. Y. J. Am. Chem. Soc. 1997. 119. 7163. (c) Lee. P. H.; Lee. K. Angew. Chem. Int. Ed. 2005. H. 3253. (d) Lee. P. H.: Lee. K.: Kang. Y. J. Am. Chen. Soc. 2066. 128. 1139. (e) Funami. H.: Kusama. H.: Iwasawa. N. Angew. Chem. Int. Ed. 2007. +6.909.
4. (a) Cavallito, C. J., Fruehauf. D. M. Bailev. J. H. J. Am. Chem. Soe. 1948, 70, 3724. (b) Lee, K. H.; Hall, I. H.: Mar, E. C.; Starnes, C. O.; El Gebaly. S. A.: Waddell, T. G.: Hadgraft, R. I:; Ruftiner. C. G.: Weidner. I. Science 1977. 196.533. (c) Spring. O.: Albert. K:. Gradmann. W. Phrochemistry 1981. 20. 1883. (d) Park. B. K.: Nakagawa. M.: Hirota. A.: Nakayama. M J. Antibiot. 1988. 41, 751. (e) Liu. S.: Liu. H.: Yan. W.: Zhang. L.: Bai, N.; Ho. C.-T. Bioorg Aled Chem. Lett. 2004, 14, 1101.
5. Lee. K.: Seomoon, D.; Lee. P. H. Angew. Chem. Int. Ed. 2002, il. 3901.
