DOI QR코드

DOI QR Code

Photoelectrochemical Deposition of CdZnSe Thin Films on the Se-Modified Au Electrode

  • Ham, Sun-Young (Department of Chemistry, Yonsei University, Wonju Campus) ;
  • Jeon, So-Yeon (Department of Applied Chemistry, Konkuk University) ;
  • Lee, Ungki (Department of Applied Chemistry, Konkuk University) ;
  • Paeng, Ki-Jung (Department of Chemistry, Yonsei University) ;
  • Myung, No-Seung (Department of Applied Chemistry, Konkuk University)
  • Published : 2008.05.20

Abstract

Photoelectrochemical deposition of CdZnSe thin films on the Se-modified Au electrode using electrochemical quartz crystal microgravimetry (EQCM) and voltammetry is described. Corrosion of pre-deposited Se electrodes by illumination at a fixed potential resulted in $Se^{2-}$ species, which was manifest from the EQCM frequency changes. $Se^{2-}$ species generated from the photocorrosion reacted with $Cd^{2+}$ and $Zn^{2+}$ ions in the electrolyte to form CdZnSe films on the Au electrode. The effect of electrolyte composition on the composition and band gap of CdZnSe films was studied in detail. Also, photoelectrochemistry, EDX, Raman spectroscopy were used for the characterization of CdZnSe thin films.

Keywords

References

  1. Rajeshwar, K. Adv. Mater. 1992, 4, 23 https://doi.org/10.1002/adma.19920040104
  2. Lee, J.; Kim, Y.; Kim, K.; Huh, Y.; Hyun, J.; Kim, H. S.; Noh, S. J.; Hwang, C. Bull. Korean Chem. Soc. 2007, 28, 1091 https://doi.org/10.5012/bkcs.2007.28.7.1091
  3. Krishnan, V.; Ham, D.; Mishra, K. K.; Rajeshwar, K. J. Electrochem. Soc. 1992, 139, 23 https://doi.org/10.1149/1.2069177
  4. Chae, D.; Seo, K.; Lee, S.; Yoon, S.; Shim, I. Bull. Korean Chem. Soc. 2006, 27, 762 https://doi.org/10.5012/bkcs.2006.27.5.762
  5. Natarajan, C.; Nogami, G.; Sharon, M. Thin Solid Films 1995, 261, 44
  6. Chandramohan, R.; Mahaligam, T.; Chu, J. P.; Sebastian, P. J. Solar Energy Mater. Solar Cells 2004, 81, 371 https://doi.org/10.1016/j.solmat.2003.11.013
  7. Loglio, F.; Innocenti, M.; Pezzatini, G.; Foresti, M. L. J. Elelctroanal. Chem. 2004, 562, 117 https://doi.org/10.1016/j.jelechem.2003.08.016
  8. Kaschner, A.; Strassburg, M.; Hoffmann, A.; Thomsen, C.; Bartels, M.; Lischka, K.; Schikora, D. Appl. Phys. Lett. 2000, 76, 2662 https://doi.org/10.1063/1.126436
  9. Licht, S. In Semiconductor Electrodes and Photoelectrochemistry; Licht, S., Ed.; Wiley: Weinheim, Germany, 2002; Vol. 6, p 325
  10. Ham, S.; Choi, B.; Paeng, K.; Myung, N.; Rajeshwar, K. Electrochem. Commun. 2007, 9, 1293 https://doi.org/10.1016/j.elecom.2007.01.037
  11. Ham, S.; Paeng, K.; Park, J.; Myung, N.; Kim, S.; Rajeshwar, K. J. Appl. Electrochem. 2008, 38, 203 https://doi.org/10.1007/s10800-007-9425-y
  12. Myung, N.; de Tacconi, N.; Rajeshwar, K. Electrochem. Commun. 1999, 1, 42 https://doi.org/10.1016/S1388-2481(98)00012-5
  13. Rabchynski, S. M.; Ivanou, D. K.; Streltsov, E. A. Electrochem. Commun. 2004, 6, 1051 https://doi.org/10.1016/j.elecom.2004.07.019
  14. Myung, N.; Wei, C.; Rajeshwar, K. Anal. Chem. 1992, 64, 2701 https://doi.org/10.1021/ac00046a009
  15. Streltsov, E. A.; Poznyak, S. K.; Osipovich, N. P. J. Elelctroanal. Chem. 2002, 518, 103 https://doi.org/10.1016/S0022-0728(01)00694-5
  16. Lade, S. J.; Uplane, M. D.; Lokhande, C. D. Mater. Chem. Phys. 2001, 68, 36 https://doi.org/10.1016/S0254-0584(00)00280-7
  17. Kazacos, M. S.; Miller, B. J. Electrochem. Soc. 1980, 127, 2378 https://doi.org/10.1149/1.2129431
  18. Rajeshwar, K.; Thompson, L.; Singh, P.; Kainthla, R. C.; Chopra, K. L. J. Electrochem. Soc. 1981, 128, 1744 https://doi.org/10.1149/1.2127723
  19. Choi, S.; Woo, D.; Myung, N.; Kang, H.; Park, S. J. Electrochem. Soc. 2001, 148, C569 https://doi.org/10.1149/1.1385848
  20. Hodes, G. Chemical Solution Deposition of Semiconductor Films; Marcel Dekker: New York, U.S.A., 2003; p 5
  21. Riveros, G.; Gümez, H.; Henriquez, R.; Schrebler, R.; Marotti, R. E.; Dalchiele, E. A. Solar Energy Mater. Solar Cells 2001, 70, 255 https://doi.org/10.1016/S0927-0248(01)00066-6
  22. Mahalingam, T.; Kathalingam, A.; Velumani, S.; Lee, S.; Sun, M. H.; Deak, K. Y. J. Mater. Sci. 2006, 41, 3353
  23. Murali, K. R.; Balasubramanian, M. Mater. Sci. Eng. A 2006, 431, 118 https://doi.org/10.1016/j.msea.2006.05.123
  24. Kumaresan, R.; Ichimura, M.; Arai, E. Thin Solid Films 2002, 414, 25 https://doi.org/10.1016/S0040-6090(02)00450-9
  25. Desnica-Frankovic, I. D.; Dubcek, P.; Buljan, M.; Furic, K.; Desnica, U. V.; Bernstorff, S.; Karl, H.; GroBhans, I.; Stritzker, B. Nucl. Instr. and Meth. B 2005, 238, 302 https://doi.org/10.1016/j.nimb.2005.06.067
  26. Lu, G.; An, H.; Chen, Y.; Huang, J.; Zhang, H.; Xiang, B.; Zhao, Q.; Yu, D.; Du, W. J. Crystal Growth 2005, 274, 530 https://doi.org/10.1016/j.jcrysgro.2004.10.062
  27. Schreder, B.; Materny, A.; Kiefer, W.; Kummell, T.; Bacher, G.; Forchel, A.; Landwehr, G. Solid State Chem. 2000, 114, 435 https://doi.org/10.1016/S0038-1098(00)00077-6

Cited by

  1. Atomic force microscopy studies on sulfur-, selenium- and tellurium-based metal chalcogenide thin films: A review vol.11, pp.5, 2017, https://doi.org/10.5897/AJPAC2017.0739
  2. Effects of Illumination on the Electrochemical Behavior of Selenium Electrodeposition on ITO Substrates vol.164, pp.4, 2017, https://doi.org/10.1149/2.1481704jes
  3. Electrochemical Synthesis of CdSe Nanoparticles Using a Se-modified RVC Electrode and Mercaptoacetic Acid as a Stabilizer vol.30, pp.5, 2008, https://doi.org/10.5012/bkcs.2009.30.5.1201
  4. Crystal structure and spectral photosensitivity of thermally evaporated ZnxCd1−xSe thin films vol.44, pp.41, 2008, https://doi.org/10.1088/0022-3727/44/41/415305
  5. Photoelectrochemical Deposition of CuInSe2 Thin Films vol.15, pp.4, 2008, https://doi.org/10.1149/2.007204esl
  6. A Short Review on Raman Studies of Metal Chalcogenide Semiconductor Thin Films vol.33, pp.7, 2008, https://doi.org/10.14233/ajchem.2021.23112