DOI QR코드

DOI QR Code

Diffusion of Probe Molecule in Small Liquid n-Alkanes: A Molecular Dynamics Simulation Study

  • Yoo, Choong-Do (Department of Chemistry, Kyungsung University) ;
  • Kim, Soon-Chul (Department of Physics, Andong National UniversityKorea) ;
  • Lee, Song-Hi (Department of Chemistry, Kyungsung University)
  • Published : 2008.08.20

Abstract

The probe diffusion and friction constants of methyl yellow (MY) in liquid n-alkanes of increasing chain length were calculated by equilibrium molecular dynamics (MD) simulations at temperatures of 318, 418, 518 and 618 K. Lennard-Jones particles with masses of 225 and 114 g/mol are modeled for MY. We observed that the diffusion constant of the probe molecule follows a power law dependence on the molecular weight of nalkanes, DMY${\sim}M^{-\gamma}$ well. As the molecular weight of n-alkanes increases, the exponent $\gamma$ shows sharp transitions near n-dotriacontane ($C_{32}$) for the large probe molecule (MY2) at low temperatures of 318 and 418 K. For the small probe molecule (MY1) $D_{MY1}$ in $C_{12}$ to C80 at all the temperatures are always larger than Dself of n-alkanes and longer chain n-alkanes offer a reduced friction relative to the shorter chain n-alkanes, but this reduction in the microscopic friction for MY1 is not large enough to cause a transition in the power law exponent in the log-log plot of DMY1 vs M of n-alkane. For the large probe molecule (MY2) at high temperatures, the situation is very similar to that for MY1. At low temperatures and at low molecular weights of n-alkanes, $D_{MY2}$ are smaller than $D_{self}$ of n-alkanes due to the relatively large molecular size of MY2, and MY2 experiences the full shear viscosity of the medium. As the molecular weight of n-alkane increases, $D_{self}$ of n-alkanes decreases much faster than $D_{MY2}$ and at the higher molecular weights of n-alkane, MY2 diffuses faster than the solvent fluctuations. Therefore there is a large reduction of friction in longer chains compared to the shorter chains, which enhances the diffusion of MY2. The calculated friction constants of MY1 and MY2 in liquid n-alkanes supported these observations. We deem that this is the origin of the so-called“solventoligomer”transition.

Keywords

References

  1. Fujita, H. Adv. Polym. Sci. 1961, 3, 1 https://doi.org/10.1007/BFb0050514
  2. Ferry, J. D. Viscoelastic Properties of Polymers, 3rd ed.; Wiley: New York, 1980
  3. Epameinondas, E.; Forrest, B. M.; Widmann, A. H.; Sulter, U. W. J. Chem. Soc., Faraday Trans. 1995, 91, 2355: Forrest, B. M.; Sulter, U. W. J. Chem. Phys. 1994, 101, 2616 https://doi.org/10.1063/1.467634
  4. Gusev, A. A.; Müller-Plathe, F.; van Gunstern, W. F.; Sulter, U. W. Adv. Polym. Sci. 1994, 116, 207; Müller-Plathe, F. Acta Polym. 1994, 45, 259 https://doi.org/10.1002/actp.1994.010450401
  5. Park, H. S.; Chang, T.; Lee, S. H. J. Chem. Phys. 2000, 113, 5502 https://doi.org/10.1063/1.1289820
  6. Hayduck, W.; Cheng, S. C. Chem. Eng. Sci. 1971, 26, 635 https://doi.org/10.1016/0009-2509(71)86007-4
  7. Gisser, D. J.; Johnson, B. S.; Ediger, M. D.; von Meerwall, E. D. Macromolecules 1993, 26, 512 https://doi.org/10.1021/ma00055a017
  8. von Meerwall, E. D.; Amis, E. J.; Ferry, J. D. Macromolecules 1985, 18, 260 https://doi.org/10.1021/ma00144a024
  9. Landry, M. R.; Gu, Q.; Yu, H. Macromolecules 1988, 21, 1158 https://doi.org/10.1021/ma00182a051
  10. Evans, D. J.; Hoover, W. G.; Failor, B. H.; Moran, B.; Ladd, A. J. C. Phys. Rev. 1983, A28, 1016
  11. Simmons, A. J. D.; Cummings, P. T. Chem. Phys. Lett. 1986, 129, 92 https://doi.org/10.1016/0009-2614(86)80176-2
  12. Siepmann, J. I.; Karaborni, S.; Smit, B. Nature (London) 1993, 365, 330 https://doi.org/10.1038/365330a0
  13. Smit, B.; Karaborni, S.; Siepmann, J. I. J. Chem. Phys. 1995, 102, 2126 https://doi.org/10.1063/1.469689
  14. Mundy, C. J.; Siepmann, J. I.; Klein, M. L. J. Chem. Phys. 1995, 102, 3376 https://doi.org/10.1063/1.469211
  15. Cui, S. T.; Cummings, P. T.; Cochran, H. D. J. Chem. Phys. 1996, 104, 255 https://doi.org/10.1063/1.470896
  16. Cui, S. T.; Gupta, S. A.; Cummings, P. T.; Cochran, H. D. J. Chem. Phys. 1996, 105, 1214 https://doi.org/10.1063/1.471971
  17. Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. J. Am. Chem. Soc. 1984, 106, 6638 https://doi.org/10.1021/ja00334a030
  18. Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equation; Prentice-Hall: Englewood Cliffs, 1971
  19. Andersen, H. J. Comput. Phys. 1984, 52, 24 https://doi.org/10.1016/0021-9991(83)90014-1
  20. Kirkwood, J. J. Chem. Phys. 1946, 14, 180 https://doi.org/10.1063/1.1724117
  21. Ciccotti, G.; Ferrario, M.; Hynes, J. T.; Kapral, R. J. Chem. Phys. 1990, 93, 7137 https://doi.org/10.1063/1.459437
  22. Kubo, R. Rep. Prog. Phys. 1966, 29, 255 https://doi.org/10.1088/0034-4885/29/1/306
  23. Fleisher, G. Polymer Bulletin (Berlin) 1983, 9, 152
  24. Pearson, D. S.; Ver Strate, G.; von Meerwall, E.; Schilling, F. C. Macromolecules 1987, 20, 1133 https://doi.org/10.1021/ma00171a044
  25. Von Meerwall, E.; Beckman, S.; Jang, J.; Mattice, W. L. J. Chem. Phys. 1998, 108, 4299 https://doi.org/10.1063/1.475829
  26. Lee, S. H.; Chang, T. Bull. Korean Chem. Soc. 2003, 24, 1590 https://doi.org/10.5012/bkcs.2003.24.11.1590
  27. Ertl, H.; Dullien, F. A. L. AIChE J. 1973, 19, 1215 https://doi.org/10.1002/aic.690190619
  28. Mendelson, R. A.; Bowles, W. A.; Finer, F. L. J. Polym. Sci. Part A-2 1970, 8, 105 https://doi.org/10.1002/pol.1970.160080109
  29. Raju, V. R.; Smith, G. G.; Marin, G.; Knox, J. R.; Graessley, W. W. J. Polym. Sci., Polym. Phys. Ed. 1979, 17, 1183 https://doi.org/10.1002/pol.1979.180170704
  30. Evans, D. F.; Tominaga, T.; Davis, H. T. J. Chem. Phys. 1981, 74, 1298 https://doi.org/10.1063/1.441190
  31. Chen, S.-H.; Davis, H. T.; Evans, D. F. J. Chem. Phys. 1982, 77, 2540 https://doi.org/10.1063/1.444125
  32. Ben-Amotz, D.; Scott, T. W. J. Chem. Phys. 1987, 87, 3739 https://doi.org/10.1063/1.452928
  33. Lagar'kov, A. N.; Sergeev, V. H. Usp. Fiz. Nauk. 1978, 125, 409 https://doi.org/10.3367/UFNr.0125.197807b.0409
  34. Lagar'kov, A. N.; Sergeev, V. H [Sov. Phys. Usp. 1978, 21, 566]. https://doi.org/10.1070/PU1978v021n07ABEH005665

Cited by

  1. Drop mass transfer in a microfluidic chip compared to a centrifugal contactor vol.60, pp.8, 2014, https://doi.org/10.1002/aic.14510
  2. -Alkane Systems: A Molecular Dynamics Simulation Study vol.2019, pp.2090-9071, 2019, https://doi.org/10.1155/2019/8134904