References
- Fan, H.; Peng, J.; Hamann, M. T.; Hu, J.-F. Chem. Rev. 2008, 108, 264-287 https://doi.org/10.1021/cr078199m
- Gupton, J. T. Top. Heterocycl. Chem. 2006, 2, 53-92 https://doi.org/10.1007/7081_019
- Bellina, F.; Rossi, R. Tetrahedron 2006, 62, 7213-7256 https://doi.org/10.1016/j.tet.2006.05.024
- Knight, D. W.; Sharland, C. M. Synlett 2004, 119-121
- Knight, D. W.; Sharland, C. M. Synlett 2003, 2258-2260
- Magnus, N. A.; Staszak, M. A.; Udodong, U. E.; Wepsiec, J. P. Org. Proc. Res. Dev. 2006, 10, 899-904 https://doi.org/10.1021/op060104f
- Cohnen, E.; Dewald, R. Synthesis 1987, 566-568
- Misra, N. C.; Panda, K.; Ila, H.; Junjappa, H. J. Org. Chem. 2007, 72, 1246-1251 https://doi.org/10.1021/jo062139j
- Khalili, B.; Jajarmi, P.; Eftekhari-Sis, B.; Hashemi, M. M. J. Org. Chem. 2008, 73, 2090-2095 https://doi.org/10.1021/jo702385n
- Thasana, N.; Worayuthakarn, R.; Kradanrat, P.; Hohn, E.; Young, L.; Ruchirawat, S. J. Org. Chem. 2007, 72, 9379-9382 https://doi.org/10.1021/jo701599g
- Su, S.; Porco, J. A. Jr. J. Am. Chem. Soc. 2007, 129, 7744-7745 https://doi.org/10.1021/ja072737v
- Dhawan, R.; Arndtsen, B. A. J. Am. Chem. Soc. 2004, 126, 468-469 https://doi.org/10.1021/ja039152v
- Pandey, P. S.; Rao, T. S. Bioorg. Med. Chem. Lett. 2004, 14, 129-131 https://doi.org/10.1016/j.bmcl.2003.10.019
- Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891 https://doi.org/10.1021/cr010043d
- Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627-645 https://doi.org/10.2174/1385272023374094
- Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481-1490 https://doi.org/10.5012/bkcs.2005.26.10.1481
- Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511-4574 https://doi.org/10.1016/j.tet.2008.02.087
- Declerck, V.; Ribiere, P.; Martinez, J.; Lamaty, F. J. Org. Chem. 2004, 69, 8372-8381 https://doi.org/10.1021/jo048519r
- Shi, M.; Xu, Y.-M. Eur. J. Org. Chem. 2002, 696-701
- Roy, A. K.; Pathak, R.; Yadav, G. P.; Maulik, P. R.; Batra, S. Synthesis 2006, 1021-1027
- Singh, V.; Kanojiya, S.; Batra, S. Tetrahedron 2006, 62, 10100-10110 https://doi.org/10.1016/j.tet.2006.08.045
- Lee, H. S.; Kim, J. M.; Kim, J. N. Tetrahedron Lett. 2007, 48, 4119-4122 https://doi.org/10.1016/j.tetlet.2007.04.022
- Kim, S. J.; Kim, H. S.; Kim, T. H.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 1605-1608 https://doi.org/10.5012/bkcs.2007.28.9.1605
- Kabalka, G. W.; Venkataiah, B.; Chen, C. Tetrahedron Lett. 2006, 47, 4187-4189 https://doi.org/10.1016/j.tetlet.2006.04.063
- Lee, A. S.-Y.; Chang, Y.-T.; Wang, S.-H.; Chu, S.-F. Tetrahedron Lett. 2002, 43, 8489-8492 https://doi.org/10.1016/S0040-4039(02)02088-9
- Lee, K. Y.; Park, D. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 1489-1492 https://doi.org/10.5012/bkcs.2006.27.9.1489
- Isaac, M. B.; Paquette, L. A. J. Org. Chem. 1997, 62, 5333-5338 https://doi.org/10.1021/jo970267p
- Paquette, L. A.; Mendez-Andino, J. Tetrahedron Lett. 1999, 40, 4301-4304 https://doi.org/10.1016/S0040-4039(99)00781-9
- Aerobic oxidation of dihydropyrroles to pyrrole, see: Shim, Y. K.; Youn, J. I.; Chun, J. S.; Park, T. H.; Kim, M. H.; Kim, W. J. Synthesis 1990, 753-754
- Panunzio, M.; Lentini, M. A.; Campana, E.; Martelli, G.; Tamanini, E.; Vicennati, P. Synth. Commun. 2004, 34, 345-359 https://doi.org/10.1081/SCC-120027272
- Demir, A. S.; Aybey, A.; Kayalar, M. ARKIVOC 2005 (xv) 105-116
- Demir, A. S.; Emrullahoglu, M. Tetrahedron 2005, 61, 10482-10489 https://doi.org/10.1016/j.tet.2005.08.050
- Prior, A. M.; Robinson, R. S. Tetrahedron Lett. 2008, 49, 411-414 https://doi.org/10.1016/j.tetlet.2007.11.116
- Witkop, B. J. Am. Chem. Soc. 1956, 78, 2873-2882 https://doi.org/10.1021/ja01593a065
- Malhotra, S. K.; Hostynek, J. J.; Lundin, A. F. J. Am. Chem. Soc. 1968, 90, 6565-6566 https://doi.org/10.1021/ja01025a086
Cited by
- Base-Mediated Aerobic Oxidation of Hagemann's Ester: Competitive Hydroxylation at C-1 and C-3 Positions vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1725
- Recent Advances in Construction of Nitrogen-containing Heterocycles from Baylis-Hillman Adducts vol.43, pp.1, 2011, https://doi.org/10.1080/00304948.2011.549065
- Facile Regiocontrolled Three-Step Synthesis of Poly-Substituted Furans, Pyrroles, and Thiophenes: Consecutive Michael Addition of Methyl Cyanoacetate to α,β-Enone, CuI-Mediated Aerobic Oxidation, and Acid-Catalyzed Paal-Knorr Synthesis vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.620
- Facile Synthesis of 5-Hydroxy-3-pyrrolin-2-ones from Morita-Baylis-Hillman Adducts vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1622
- An Efficient Synthesis of Various γ-Substituted Butenolides from Morita-Baylis-Hillman Adducts vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1781
- ChemInform Abstract: Regioselective Synthesis of Poly-Substituted Pyrroles from Baylis-Hillman Adducts via the [3 + 1 + N] Annulation Strategy. vol.40, pp.13, 2009, https://doi.org/10.1002/chin.200913104
- Ir(ppy)3-Catalyzed, Visible-Light-Mediated Reaction of α-Chloro Cinnamates with Enol Acetates: An Apparent Halogen Paradox vol.20, pp.18, 2018, https://doi.org/10.1021/acs.orglett.8b02484