DOI QR코드

DOI QR Code

Ruthenium-NHC Complexes Immobilized on MCF: Application to Catalytic Ring-Closing Metathesis

  • Park, Kang-Hyun (Department of Chemistry, Pusan National UniversityKorea) ;
  • Kim, Seong-jin (Intelligent Textile System Research Center, and Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Chung, Young-Keun (Intelligent Textile System Research Center, and Department of Chemistry, College of Natural Sciences, Seoul National University)
  • Published : 2008.10.20

Abstract

Keywords

References

  1. Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731 https://doi.org/10.1021/cr0104330
  2. Terao, J.; Kambe, N. Bull. Chem. Soc. Jpn. 2006, 79, 663 https://doi.org/10.1246/bcsj.79.663
  3. Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004
  4. Mol, J. C. J. Mol. Catal. A 2004, 213, 39 https://doi.org/10.1016/j.molcata.2003.10.049
  5. Hong, J. H.; Ko, O. H. Bull. Korean Chem. Soc. 2003, 24, 1289 https://doi.org/10.5012/bkcs.2003.24.9.1289
  6. Applications in Organic Synthesis in Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, 2003; Vol. 2
  7. Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 11360 https://doi.org/10.1021/ja0214882
  8. Bielawsky, C. W.; Grubbs, R. H. Angew. Chem. Int. Ed. 2000, 39, 2903 https://doi.org/10.1002/1521-3773(20000818)39:16<2903::AID-ANIE2903>3.0.CO;2-Q
  9. Yao, Q. Angew. Chem. Int. Ed. 2000, 39, 3896 https://doi.org/10.1002/1521-3773(20001103)39:21<3896::AID-ANIE3896>3.0.CO;2-8
  10. Kingsbury, J. S.; Garber, S. B.; Giftos, J. M.; Gray, B. L.; Okamoto, M. M.; Farrer, R. A.; Fourkas, J. T.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2001, 40, 4251 https://doi.org/10.1002/1521-3773(20011119)40:22<4251::AID-ANIE4251>3.0.CO;2-L
  11. Audic, N.; Clavier, H.; Mauduit, M.; Guillemin, J.-C. J. Am. Chem. Soc. 2003, 125, 9248 https://doi.org/10.1021/ja021484x
  12. Buchmeiser, M. R. New J. Chem. 2004, 28, 549 https://doi.org/10.1039/b315236g
  13. Matsugi, M.; Curran, D. P. J. Org. Chem. 2005, 70, 1636 https://doi.org/10.1021/jo048001n
  14. Varray, S.; Lazaro, R.; Martinez, J.; Lamaty, F. Organometallics 2003, 22, 2426 https://doi.org/10.1021/om021007n
  15. Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791 https://doi.org/10.1021/ja983222u
  16. Grela, K.; Tryznowski, M.; Bieniek, M. Tetrahedron Lett. 2002, 43, 9055 https://doi.org/10.1016/S0040-4039(02)02283-9
  17. Ko, K.; Park, S.; Choi, M. Bull. Kor. Chem. Soc. 2000, 21, 951. (b) Kim, S.-W.; Son, S. U.; Lee, S. I.; Hyeon, T.; Chung, Y. K. J. Am. Chem. Soc. 2000, 122, 1550 https://doi.org/10.1021/ja9939237
  18. Schmidt-Winkel, P.; Lukens, W. W., Jr.; Yang, P.; Margolese, D. I.; Lettow, J. S.; Ying, J. Y.; Stucky, G. D. Chem. Mater. 2000, 12, 686 https://doi.org/10.1021/cm991097v
  19. Wanzlick, H.-W. Angew. Chem. 1962, 74, 129 https://doi.org/10.1002/ange.19620740402
  20. Wanzlick, H.-W.; Esser, F.; Kleiner, H. J. Chem. Ber. 1963, 96, 1208 https://doi.org/10.1002/cber.19630960505
  21. Wanzlick, H.-W.; Kleiner, H. J. Chem. Ber. 1963, 96, 3024 https://doi.org/10.1002/cber.19630961127
  22. Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361 https://doi.org/10.1021/ja00001a054
  23. Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18 https://doi.org/10.1021/ar000114f
  24. Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, Germany, 2003; Vols 1-3
  25. Blechert, S.; Connon, S. J. Angew. Chem., Int. Ed. 2003, 42, 1900 https://doi.org/10.1002/anie.200200556
  26. Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592 https://doi.org/10.1002/anie.200300576
  27. Herrmann, W. A.; Ofele, K.; Preysing, D. V.; Schneider, S. K. J. Organomet. Chem. 2003, 687, 22
  28. Navarro, O.; Kelly, R. A., III; Nolan, S. P. J. Am. Chem. Soc. 2003, 125, 16194 https://doi.org/10.1021/ja038631r
  29. Marion, N.; Ecarnot, E. C.; Navarro, O.; Amoroso, D.; Bell, A.; Nolan, S. P. J. Org. Chem. 2006, 71, 3816 https://doi.org/10.1021/jo060190h
  30. Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101 https://doi.org/10.1021/ja057704z
  31. Navarro, O.; Marion, N.; Mei, J.; Nolan, S. P. Chem.-Eur. J. 2006, 12, 5142 https://doi.org/10.1002/chem.200600283
  32. Jung, I. G.; Seo, J.; Lee, S. I.; Choi, S. Y.; Chung, Y. K. Organometallics 2006, 25, 4240 https://doi.org/10.1021/om0606284
  33. De Lewis, A. K.; Caddick, S.; Cloke, F. G. N.; Billingham, N. C.; Hitchcock, P. B.; Leonard, J. J. Am. Chem. Soc. 2003, 125, 10066 https://doi.org/10.1021/ja035565k
  34. Lee, H. M.; Jiang, T.; Stevens, E. D.; Nolan, S. P. Organometallics 2001, 20, 1255 https://doi.org/10.1021/om000990x
  35. Hillier, A. C.; Lee, H. M.; Stevens, E. D.; Nolan, S. P. Organometallics 2001, 20, 4246 https://doi.org/10.1021/om0103456
  36. Vasquez- Serrano, L. D.; Owens, B. T.; Buriak, J. M. Chem. Commun. 2002, 2518
  37. Perry, M. C.; Cui, X.; Powell, M. T.; Hou, D.-R.; Reibenspies, H. J.; Burgess, K. J. Am. Chem. Soc. 2003, 125, 113 https://doi.org/10.1021/ja028142b
  38. Marko, I. E.; Stérin, S.; Buisine, O.; Mignani, G.; Branlard, P.; Tinant, B.; Declerq, J.-P. Science 2002, 298, 204 https://doi.org/10.1126/science.1073338
  39. Díez- González, S.; Kaur, H.; Kauer Zinn, F.; Stevens, E. D.; Nolan, S. P. J. Org. Chem. 2005, 70, 4784 https://doi.org/10.1021/jo050397v
  40. Zuo, G.; Louie, J. Angew. Chem., Int. Ed. 2004, 43, 2277 https://doi.org/10.1002/anie.200353469
  41. Ofele, K.; Herrmann, W. A.; Mihalios, D.; Elison, M.; Herdtweck, E.; Scherer, W.; Mink, J. J. Organomet. Chem. 1993, 459, 177 https://doi.org/10.1016/0022-328X(93)86070-X
  42. Huang, I.; Schanz, H.-J.; Stevens, E. D.; Nolan, S. P. Organometallics 1999, 18, 2370 https://doi.org/10.1021/om990054l
  43. Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39 https://doi.org/10.1021/cr940472u
  44. Díez-González, S.; Nolan, S. P. Coord. Chem. Rev. 2007, 251, 874 https://doi.org/10.1016/j.ccr.2006.10.004

Cited by

  1. Grubbs Catalysts Immobilized on Mesoporous Molecular Sieves via Phosphine and Pyridine Linkers vol.1, pp.7, 2011, https://doi.org/10.1021/cs200090e
  2. Imidazolium-derived organosilicas for catalytic applications vol.1, pp.9, 2011, https://doi.org/10.1039/c1cy00287b
  3. Synthesis of Poly(silyl ether)s by Rhodium(I)-NHC Catalyzed Hydrosilylation: Homogeneous versus Heterogeneous Catalysis vol.5, pp.5, 2012, https://doi.org/10.1002/cctc.201200309
  4. Towards “cleaner” olefin metathesis: tailoring the NHC ligand of second generation ruthenium catalysts to afford auxiliary traits vol.16, pp.10, 2014, https://doi.org/10.1039/C4GC00705K
  5. Synthesis and characteristics of silica-supported N-heterocyclic carbene catalyst for ring-opening polymerization of D-lactide to produce polylactide vol.22, pp.8, 2014, https://doi.org/10.1007/s13233-014-2110-1
  6. Heterogeneous catalysts based on supported Rh–NHC complexes: synthesis of high molecular weight poly(silyl ether)s by catalytic hydrosilylation vol.4, pp.1, 2014, https://doi.org/10.1039/C3CY00598D
  7. Orthometallation of N-substituents at the NHC ligand of [Rh(Cl)(COD)(NHC)] complexes: its role in the catalytic hydrosilylation of ketones vol.5, pp.3, 2015, https://doi.org/10.1039/C4CY01556H
  8. Grafting of Copper(I)-NHC Species on MCM-41: Homogeneous versus Heterogeneous Catalysis vol.7, pp.16, 2015, https://doi.org/10.1002/cctc.201500508
  9. Homogeneous and heterogenised masked N-heterocyclic carbenes for bio-based cyclic carbonate synthesis vol.18, pp.6, 2016, https://doi.org/10.1039/C5GC02046H
  10. Immobilized Grubbs catalysts on mesoporous silica materials: insight into support characteristics and their impact on catalytic activity and product selectivity vol.6, pp.8, 2016, https://doi.org/10.1039/C5CY01897H
  11. Opportunities of Immobilized Homogeneous Metathesis Complexes as Prominent Heterogeneous Catalysts vol.8, pp.19, 2016, https://doi.org/10.1002/cctc.201600591
  12. Immobilization of N-Heterocyclic Carbene Compounds: A Synthetic Perspective vol.117, pp.3, 2017, https://doi.org/10.1021/acs.chemrev.6b00631
  13. -heterocyclic Carbene Catalysts vol.8, pp.3, 2014, https://doi.org/10.1002/cssc.201403036
  14. ChemInform Abstract: Ruthenium-NHC Complexes Immobilized on MCF: Application to Catalytic Ring-Closing Metathesis. vol.40, pp.10, 2009, https://doi.org/10.1002/chin.200910040
  15. SBA-15 Immobilized Ruthenium Carbenes as Catalysts for Ring Closing Metathesis and Ring Opening Metathesis Polymerization vol.53, pp.3-4, 2010, https://doi.org/10.1007/s11244-009-9418-7
  16. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2008 vol.254, pp.1, 2008, https://doi.org/10.1016/j.ccr.2009.07.018
  17. A Polymerization‐Powered Motor vol.123, pp.40, 2008, https://doi.org/10.1002/ange.201103565
  18. A Polymerization‐Powered Motor vol.50, pp.40, 2011, https://doi.org/10.1002/anie.201103565
  19. Olefin Ring‐closing Metathesis under Spatial Confinement and Continuous Flow vol.13, pp.9, 2008, https://doi.org/10.1002/cctc.202001993