참고문헌
- Kimura, Y.; Okuda, H.; Arichi, S. Biochim. Biophys. Acta 1985, 834, 275 https://doi.org/10.1016/0005-2760(85)90167-5
- Stivala, L. A.; Savio, M.; Carafoli, F.; Perucca, P.; Bianchi, L.; Maga, G.; Forti, L.; Pagoni, U. M.; Albini, A.; Prosperi, E.; Vannini, V. J. Biol. Chem. 2001, 276, 22586 https://doi.org/10.1074/jbc.M101846200
- Frankel, E. N.; Waterhouse, A. L.; Kinsella, J. E. Lancet 1993, 341, 1103
- Rho, H. S.; Baek, H. S.; You, J. W.; Kim, S. J.; Kim, M.-K.; Kim, D. H.; Chang, I. S. Bull. Korean Chem. Soc. 2007, 28, 837 https://doi.org/10.5012/bkcs.2007.28.5.837
- Gupta, Y. K.; Chaudhary, G.; Srivastava, A. K. Pharmacology 2002, 65, 170 https://doi.org/10.1159/000058044
- Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.; Beecher, C. W. W.; Fong, H. H. S.; Farnworth, R. N.; Kinghorn, A. D.; Metha, R. G.; Moon, R. C.; Pezzuto, J. M. Science 1997, 275, 218 https://doi.org/10.1126/science.275.5297.218
- Doeherty, J. J.; Fu, M. M. H.; Stiffler, B. S.; Limperos, R. J.; Pokabla, C. M.; DeLucia, A. L. Antiviral Res. 1999, 43, 145 https://doi.org/10.1016/S0166-3542(99)00042-X
- Ko, S. K.; Lee, C. R.; Lee, H. S.; Kim, H.; Baek, K. H.; Tokuoka, K.; Chung, S. H. Kor. J. Pharmacogn. 2003, 34, 25
- Ko, S. K.; Lee, S. M.; Whang, W. K. Arch. Pharm. Res. 1999, 22, 401 https://doi.org/10.1007/BF02979065
- Bosanac, T.; Yang, J.; Wilcox, C. S. Angew. Chem., Int. Ed. 2001, 40, 1875 https://doi.org/10.1002/1521-3773(20010518)40:10<1875::AID-ANIE1875>3.0.CO;2-5
- Botella, L.; Najera, C. Tetrahedron 2004, 60, 5563 https://doi.org/10.1016/j.tet.2004.04.076
- Cho, C.-H.; Park, K. Bull. Korean Chem. Soc. 2007, 28, 1159 https://doi.org/10.5012/bkcs.2007.28.7.1159
- Colvin, E. W.; Hamill, B. J. J. Chem. Soc. Perkin Trans. 1 1977, 869
- Drewes, S. E.; Fletcher, L. P. J. Chem. Soc. Perkin Trans. 1 1974, 961
피인용 문헌
- Polyphenols from Sophora yunnanensis, and Their Inhibitory Effects on Nitric Oxide Production vol.59, pp.12, 2011, https://doi.org/10.1248/cpb.59.1567
- Combined Use of High-Resolution α-Glucosidase Inhibition Profiling and High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry–Solid-Phase Extraction–Nuclear Magnetic Resonance Spectroscopy for Investigation of Antidiabetic Principles in Crude Plant Extracts vol.63, pp.8, 2015, https://doi.org/10.1021/jf506297k
- ChemInform Abstract: A New Synthesis of Stilbene Natural Product Piceatannol (V). vol.40, pp.6, 2009, https://doi.org/10.1002/chin.200906204
- Efficient Total Synthesis of Piceatannol via (E)-Selective Wittig-Horner Reaction vol.39, pp.8, 2008, https://doi.org/10.1080/00397910802528944
- Activity-Guided Isolation of Resveratrol Oligomers from a Grapevine-Shoot Extract Using Countercurrent Chromatography vol.60, pp.48, 2012, https://doi.org/10.1021/jf3030584
- Synthesis of 3,5,3′, 4′-Tetrahydroxy-trans-stilbene4′-O-β-D-glucopyranoside by Glucosyltransferases from Phytolacca americana vol.8, pp.1, 2008, https://doi.org/10.1177/1934578x1300800128
- Synthesis of Piceatannol, an Oxygenated Analog of Resveratrol vol.11, pp.7, 2016, https://doi.org/10.1177/1934578x1601100732
- A New Stilbene from the Root of Cassia sieberiana D.C. (Fabaceae) vol.12, pp.7, 2008, https://doi.org/10.1177/1934578x1701200723
- Cassane-type diterpenoids from Caesalpinia latisiliqua (Cav.) Hattink vol.47, pp.None, 2022, https://doi.org/10.1016/j.phytol.2021.11.011