DOI QR코드

DOI QR Code

Ultra-fast Detection and Differentiation of Mycoplasma haemofelis and Candidatus M. Haemominutum in Korean Feral Cats by Microchip Electrophoresis with Programmed Field Strength Gradients

  • Kumar, Kailasa S. (Department of Chemistry and Basic Science Research Institute, Chonbuk National University) ;
  • Lee, Hee-Gu (Cellomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yoo, Dong-Jin (Department of Chemistry, Seonam University) ;
  • Kang, Seong-Ho (Department of Chemistry and Basic Science Research Institute, Chonbuk National University)
  • Published : 2008.01.20

Abstract

A microchip-based capillary gel electrophoresis (MCGE) technique was developed for the ultra-fast detection and differentiation of Candidatus Mycoplasma haemominutum (Candidatus M. haemominutum, California strain) and Mycoplasma haemofelis (M. haemofelis, Ohio strain) in Korean feral cats through the application of programmed field strength gradients (PFSG) in a conventional glass double-T microchip. The effects of the poly (ethyleneoxide) (PEO) concentration and electric field strength on the separation of DNA fragments were investigated. The PCR-amplified products of Candidatus M. haemominutum (202-bp) and M. haemofelis (273-bp) were analyzed by MCGE within 75 s under a constant applied electric field of 117.6 V/cm and a sieving matrix of 0.3% PEO (Mr 8 000 000). When the PFSG was applied, MCGE analysis generated results 6.8-times faster without any loss of resolution or reproducibility. The MCGE-PFSG technique was also applied to eleven samples selected randomly from 33 positive samples. The samples were detected and differentiated within 11 s. The analysis time of the MCGE-PFSG technique was approximately 980-times faster than that using conventional slab gel electrophoresis.

Keywords

References

  1. Flint, J. C.; Roepke, M. H.; Jensen, R. Am. J. Vet. Res. 1958, 19, 164
  2. Berent, L. M.; Messick, J. B.; Cooper, S. K. Am. J. Vet. Res. 1998, 59, 1215
  3. Tasker, S.; Lappin, M. R. J. Feline Med. Surg. 2002, 4, 3 https://doi.org/10.1053/jfms.2001.0155
  4. Inokuma, H.; Taroura, S.; Okuda, M.; Hisasue, M.; Itamoto, K.; Une, S.; Nakaichi, M.; Taura, Y. J. Vet. Med. Sci. 2004, 66, 1017 https://doi.org/10.1292/jvms.66.1017
  5. Watanabe, M.; Hisasue, M.; Hashizaki, K.; Furuichi, M.; Ogata, M.; Hisamatsu, S.; Ogi, E.; Hasegawa, M.; Tsuchiya, R.; Yamada, T. J. Vet. Med. Sci. 2003, 65, 1111 https://doi.org/10.1292/jvms.65.1111
  6. Kewish, E. K.; Appleyard, D. G.; Myers, L. S.; Kidney, A. B.; Jackson, L. M. Can. Vet. J. 2004, 45, 749
  7. Tian, H.; Brody, L. C.; Landers, J. P. Genome Research 2000, 10, 1403 https://doi.org/10.1101/gr.132700
  8. Dolnik, V.; Liu, S. J. Sep. Sci. 2005, 28, 1994 https://doi.org/10.1002/jssc.200500243
  9. Kang, S. H.; Jang, S.; Park, S.-G.; Bull. Korean Chem. Soc. 2006, 27, 1346 https://doi.org/10.5012/bkcs.2006.27.9.1346
  10. Jang, S.; Cho, K.; Chae, J.-S.; Kang, S. H. Bull. Korean Chem. Soc. 2004, 25, 757 https://doi.org/10.5012/bkcs.2004.25.5.757
  11. Sung, W. C.; Lee, G. B.; Tzeng, C. C.; Chen, S. H. Electrophoresis 2001, 22, 1188 https://doi.org/10.1002/1522-2683()22:6<1188::AID-ELPS1188>3.0.CO;2-P
  12. Baba, Y. J. Chromatogr. B 1996, 687, 271 https://doi.org/10.1016/S0378-4347(96)00262-9
  13. Ronai, Z.; Barta, C.; Sasvari-Szekely, M.; Guttman, A. Electrophoresis 2001, 22, 294 https://doi.org/10.1002/1522-2683(200101)22:2<294::AID-ELPS294>3.0.CO;2-4
  14. Kang, S. H.; Park, M.; Cho, K. Electrophoresis 2005, 26, 3179 https://doi.org/10.1002/elps.200500240
  15. Kim, Y. J.; Chae, J. S.; Chang, J. K.; Kang, S. H. J. Chromatogr. A 2005, 1083, 179 https://doi.org/10.1016/j.chroma.2005.06.002
  16. Fung, E. N.; Yeung, E. S. Anal. Chem. 1995, 67, 1913 https://doi.org/10.1021/ac00109a002
  17. Chang, H. T.; Yeung, E. S. J. Chromatogr. B 1995, 669, 113
  18. Gao, Q.; Yeung, E. S. Anal. Chem. 1998, 70, 1382 https://doi.org/10.1021/ac970999h
  19. Smisek, D. L.; Hoagland, D. A. Science 1990, 248, 1221 https://doi.org/10.1126/science.2349481
  20. Demana, T.; Lanan, M.; Morris, M. D. Anal. Chem. 1991, 63, 2795 https://doi.org/10.1021/ac00023a023
  21. Guttman, A.; Wanders, B.; Cooke, N. Anal. Chem. 1992, 64, 2348 https://doi.org/10.1021/ac00044a009
  22. Dolnik, V.; Liu, S. J. Sep. Sci. 2005, 28, 1994 https://doi.org/10.1002/jssc.200500243
  23. Oda, R. P.; Bush, V. J.; Landers, J. P. Hand Book of Capillary Electrophoresis, 2nd ed.; CRC Press: Boca Raton, 1997; p 673

Cited by

  1. Theoretical investigation on the performance of DNA electrophoresis under programmed step electric field strength: Two-step condition vol.38, pp.20, 2015, https://doi.org/10.1002/jssc.201500640
  2. Bioanalytical separations using electric field gradient techniques vol.30, pp.5, 2009, https://doi.org/10.1002/elps.200800614
  3. Fast Identification of Korean Cattle Based on Simultaneous Detection of Various Single Nucleotide Polymorphisms Markers by Capillary Electrophoresis vol.30, pp.9, 2008, https://doi.org/10.5012/bkcs.2009.30.9.2141
  4. On-line capillary electrophoresis for enhanced detection sensitivity of feline panleukopenia virus vol.909, pp.None, 2008, https://doi.org/10.1016/j.jchromb.2012.10.009