Facile Synthesis of *Aza*-Baylis-Hillman Adducts of Cycloalkenones: FeCl₃-Mediated Direct Amination of Baylis-Hillman Alcohols

Ka Young Lee, Hyun Seung Lee, and Jae Nyoung Kim^a

Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea E-mail: kimjn@chonnam.ac.kr
Received February 21, 2008

Key Words: Aza-Baylis-Hillman adducts, Cycloalkenones, FeCl3, Amination

The Baylis-Hillman adducts of cycloalkenones have been used widely in organic synthesis. The synthesis of Baylis-Hillman adducts from the reaction of cycloalkenones and aldehydes has been carried out with a variety of catalyst system² including the use of TMPDA^{2a} or DMAP.^{2b} However, the synthesis of aza-Baylis-Hillman adducts of cycloalkenones was not reported much.³ Direct synthesis of aza-Baylis-Hillman adducts from the reaction of cycloalkeneones and N-tosylimines was examined by using DMAP^{3a,b} or N-heterocyclic carbene catalyst very recently.3d However, the methods suffer from low yields of products3a,b and the use of special catalyst.3d In addition, these direct methods require the preparation of N-tosylimines, which could be hydrolyzed to some extent into the corresponding aldehydes and tosylamide during the separation of N-tosylimine and during the next Baylis-Hillman reaction, and this makes the separation of product tedious and lowers the yield.

Recently, direct amination of allylic, benzylic and/or propargylic alcohols has received much attention, ^{4,5} which could be achieved directly using sulfonamide derivatives with the aid of AuCl₃, ^{4a} MoCl₅, ^{4b} [Ir(COD)Cl]₂, ^{4c} Bi(OTf)₃/ KPF₆, ^{4d} or FeCl₃, ⁵ In these contexts, we decided to develop a practically efficient synthetic method of *N*-tosyl *aza*-Baylis-Hillman adducts of cycloalkenones by adopting benzylic amination protocol (*vide infra*, Scheme 1).

Starting material **1a** was prepared by the known method.² and examined for amination reaction with tosylamide under various conditions. When AuCl₃ was used (5 mol%, rt. 24 h) the reaction was sluggish and observed the formation of product **2a** in low yield (30%). The use of *p*-TsOH (5 mol%. rt. 24 h) showed similar results (*ca* 10% of **2a** and *ca* 30% of remaining **1a**). Fortunately, the use of FeCl₃ (5 mol%) produced the desired product **2a** in 88% isolated yield (rt. 12 h, Scheme 1).⁶ Although FeCl₃-catalyzed amidation reaction of allylic/benzylic alcohol system was published very recently,⁵ the successful synthesis of *N*-tosyl *aza*-Baylis-Hillman adduct **2a** in high yield from the easily available Baylis-Hillman alcohol could be highly influential in Baylis-Hillman chemistry.

Encouraged by the results various representative Baylis-Hillman adducts were prepared and examined for FeCl₃-catalyzed amination reaction with TsNH₂ and methanesulfonamide (Table 1). As shown in Table 1, the reactions of Baylis-Hillman adducts derived from 2-cyclohexen-1-one.

4.4-dimethyl-2-cyclohexen-1-one, and 2-cyclopenten-1-one provided the corresponding *aza*-Baylis-Hillman adducts **2a-i** in good yields (80-93%). The substituent of the aryl moiety did not affect much on the reaction. Methanesulfonamide showed similar reactivity (entry 5). However, when we used

Table 1. Synthesis of N-tosyl aza-Baylis-Hillman adducts of cycloalkenones^a

Entry	Product	Yield (%)	Entry	Product	Yield (%)
1	Ts NH O	2a (88)	6	Ts NH O	2f (90)
2 Cl´	Ts_NH O	2b (83)	7	Ts NH O	2g (93)
3 MeO	Ts NH O	2c (80)	8 Me	Ts NH O	2h (90)
M 4	Me o Ts NH O	2d (87)	9 MeO	Ts NH O	2i (88)
F 5	H ₃ C NH O	2e (88)	10 /	Ts NH O	2j (0)

°Conditions: Baylis-Hillman alcohol (1.0 equiv), TsNH₂ or CH₃SO₂NH₂ (entry 5, 1.2 equiv), ClCH₂CH₂Cl, FeCl₃ (5 mol⁹₉), room temperature, 12 h

aliphatic chain-attached substrate (entry 10) we did not observe the formation of the product **2j** and the failure can be explained by the difficulty for the generation of the corresponding carbocation. Unfortunately, the expected *N*-tosyl *aza*-Baylis-Hillman adduct (**2k**) was not obtained by applying the present methodology using the substrate **1k** (Scheme 2).

In summary, we disclosed an efficient synthetic approach for *N*-tosyl *aza*-Baylis-Hillman adducts of cycloalkenones *via* the FeCl₃-mediated benzylic amination protocol from the easily available Baylis-Hillman adducts.

Acknowledgements. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund. KRF-2007-532-C00010).

References and Notes

- For the synthetic applications of Baylis-Hillman adducts of cycloalkenones, see: (a) Basavaiah, D.; Rao, J. S.; Reddy, R. J. J. Org. Chem. 2004, 69, 7379-7382. (b) Shafiq, Z.; Liu, L.; Liu, Z.; Wang, D.; Chen, Y.-J. Org. Lett. 2007, 9, 2525-2528. (c) Park, J. B.; Ko, S. H.; Hong, W. P.; Lee, K.-J. Bull. Korean Chem. Soc. 2004, 25, 927-930. (d) Kabalka, G. W.; Dong, G.; Venkataiah, B.; Chen, C. J. Org. Chem. 2005, 70, 9207-9210.
- For the synthesis of Baylis-Hillman adducts of cycloalkenones, see: (a) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2004, 45, 5485-5488. (b) Lee, K. Y.; Gong, J. H.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 659-660. (c) Luo, S.; Wang, P. G.; Cheng, J.-P. J. Org. Chem. 2004, 69, 555-558. (d) Luo, S.; Mi, X.; Xu, H.; Wang, P. G.; Cheng, J.-P. J. Org. Chem. 2004, 69, 8413-8422. (e) Yamada, Y. M. A.; Ikegami, S. Tetrahedron Lett. 2000, 41, 2165-2169. (f) Aggarwal, V. K.; Mereu, A. Chem. Commun. 1999, 2311-2312.
- For the synthesis of aza-Baylis-Hillman adducts of cycloalkenones, see: (a) Shi, M.; Xu, Y.-M. Chem. Commun. 2001, 1876-1877. (b) Shi, M.; Xu, Y.-M.; Zhao, G.-L.; Wu, X.-F. Eur. J. Org. Chem. 2002, 3666-3679. (c) Shi, M.; Li, C.-Q. Tetrahedron: Asymmetry 2005, 16, 1385-1391. (d) He. L.: Jian. T.-Y.; Ye, S. J. Org. Chem. 2007, 72, 7466-7468. (e) Shi, Y.-L.; Shi, M. Synlett 2005, 2623-2626. (f) Shi, M.; Chen. L.-H.; Li, C.-Q. J. Am. Chem. Soc. 2005, 137, 3790-3800.
- For direct amination of allylic, benzylic or propargylic alcohols, see: (a) Guo, S.; Song, F.; Liu, Y. Synlett 2007, 964-968. (b) Reddy, C. R.; Madhavi, P. P.; Reddy, A. S. Tetrahedron Lett. 2007, 48, 7169-7172. (c) Yamashita, Y.; Gopalarathnam, A.; Hartwig, J.

- F. J. Am. Chem. Soc. 2007, 129, 7508-7509. (d) Qin. H.: Yamagiwa. N.; Matsunaga, S.; Shibasaki, M. Angew. Chem. Int. Ed. 2007, 46, 409-413, and further references cited therein. (e) Motokura. K.; Nakagiri, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.; Kaneda, K. Org. Lett. 2006, 8, 4617-4620. (f) Terrasson. V.; Marque, S.; Georgy, M.; Campagne, J.-M.; Prim. D. Adv. Synth. Catal. 2006, 348, 2063-2067.
- During the preparation of this manuscript, an efficient FeCl3catalyzed amidation reaction of various allylic and benzylic alcohols in nitromethane was reported, see: Jana, U.; Maiti, S.; Biswas, S. Tetrahedron Lett. 2008, 49, 858-862.
- 6. Typical experimental procedure for the synthesis of 2a: A mixture of 1a (202 mg. 1.0 mmol), TsNH₂ (205 mg. 1.2 mmol), FeCl₃ (8 mg. 5 mol⁶ b) in ClCH₂CH₂Cl (3 mL) was stirred at room temperature for 12 h. After removal of solvent the residue was purified by column chromatography (hexanes/ether. 4:1) to give 2a (313 mg. 88%) as a white solid. Other compounds were synthesized similarly and identified by comparison of their mp. ¹H and ¹³C NMR data with the reported.³ Spectroscopic data of new compounds, 2e and 2f, are as follows.
 - Compound 2e: 88%; white solid, mp 103-104 °C; IR (KBr) 3282, 1668, 1319, 1151 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.93-2.01 (m. 2H), 2.39-2.45 (m. 4H), 2.81 (s. 3H), 5.36 (d. J = 9.0 Hz, 1H), 6.00 (d. J = 9.0 Hz, 1H), 7.01 (t. J = 4.2 Hz, 1H), 7.20-7.37 (m. 5H); ¹³C NMR (CDCl₃, 75 MHz) δ 22.21, 25.75, 38.42, 41.36, 58.12, 126.50, 127.45, 128.45, 138.53, 139.82, 148.84, 198.65; ESIMS m z 280 (M*-H). Anal Calcd for C₁₄H₁₂NO₃S; C, 60.19; H, 6.13; N, 5.01. Found: C, 60.34; H, 6.37; N, 4.96.
 - Compound **2f**: 90%; white solid, mp 158-159 °C; IR (KBr) 3284, 1668, 1333, 1161 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.94 (s. 3H), 1.09 (s. 3H), 1.43-1.55 (m, 1H), 1.63-1.72 (m, 1H), 2.11-2.22 (m. 1H), 2.24-2.35 (m, 1H), 2.39 (s, 3H), 5.06 (d. J = 9.6 Hz, 1H), 6.10 (d. J = 9.6 Hz, 1H), 6.46 (s. 1H), 7.15-7.26 (m. 7H), 7.64 (d. J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 21.40, 27.37, 27.46, 32.90, 34.78, 35.23, 59.03, 126.15, 127.12, 127.31, 128.34, 129.50, 133.82, 138.08, 139.47, 143.10, 157.88, 198.84; ESIMS nvz 384 (M*-H), Anal Caled for C₂₂H₂₅NO₃S; C, 68.90; H, 6.57; N, 3.65, Found; C, 68.81; H, 6.77; N, 3.47.
- 7. We think the reaction mechanism tentatively comprised of the first generation of stable benzylic carbocation by the assistance of FeCl₃ and the following reaction with tosylamide. We also examined other amine nucleophile such as aniline, but we observed no reaction presumably due to preferential interaction of FeCl₃ with the basic aniline.
- 8. When we applied the reaction conditions to the Baylis-Hillman adduct **1k**, we observed the formation of desired product **2k** in low yield (12%). Instead we observed the formation of benzaldehyde (presumably *via* retro-Baylis-Hillman reaction), rearranged derivative **3** (10%), and appreciable amounts of remaining starting material **1k** (*ca* 20%).