Facile One-Pot Synthesis of Poly-substituted Phenols from Baylis-Hillman Adducts via [4+2] Annulation Protocol

Seong Jin Kim, Sung Hwan Kim, Ko Hoon Kim, and Jae Nyoung Kim ${ }^{*}$
Department of Chemistry and Institute of Basic Science, Chonnam Mational Lhwersity, Gwangiu 500-757, Korea
${ }^{*}$ E-mail: kiminachomam.ackr
Received December 18, 2007

Key Words: Poly-substituted phenols. Baỵlis-Hillman adducts. [4+2] Annulation

Regioselective synthesis of poly-substituted phenol derivatives is important in organic synthesis due to the abundance of phenol compounds in nature and their biological activity ${ }^{1 \cdot \hat{3}}$ Various synthetic approaches of polysubstituted phenols have been reported including the use of Baylis-Hillman adducts. ${ }^{3}$ The synthesis of phenols from Baylis-Hillman adducts was carried out very recently by using either $[3+3]^{3 \mathrm{a}}$ or $[3+1+2]$ annulation protocols. ${ }^{3 b}$
Our recent studies on the synthesis of α-pyrones ${ }^{4}$ have enabled us to prepare poly-substituted phenols when we used the Baylis-Hillman adduct of methyl vinyl ketone and deoxybenzoin derivatives via $[4+2]$ annulation protocol as shown in Scheme 1. The Baylis-Hillman acetate 1a and deoxybenzoin (2a) provide 4-carbons and 2-carbons, respectively. for the final phenol product $\mathbf{5}$ a.

As expected. to our delight, we obtained 4.5 -diarylphenol 5 a in 87% yield in a one-pot from the reaction of 1 a and deoxybenzoin (2a) in DMF in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(3.0$ equiv) at $110-120^{\circ} \mathrm{C}$ within 1 h (entry 1 in Table I. vide infra). When we run the reaction of 1 a and 2 a at room temperature $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right.$, DMF, 5 h$)$, we obtained 3 a in 78% yield as E-form. ${ }^{3 \cdot 5}$ The reaction of 3a under elevated temperature ($\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $\left.110-120^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$ gave 5 a in 85% yield. From the experimental observations the reaction mechanism can be regarded as in Scheme 1 involving the first $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction followed by sequential aldol reaction. dehydration. double bond isomerization and keto-enol tautomerization processes.

Encouraged by the results we examined the reactions of Baylis-Hillman acetates 1a-c ${ }^{3 \mathrm{jab} .5}$ and diaryl ketones 2b-d ${ }^{\circ}$
or monoaryl ketone $\mathbf{2 e}, \mathbf{2 f}$. and the results are summarized in Table 1. The reactions of $\mathbf{1 a}$ and $\mathbf{2 h}$-d afforded the corresponding diaryl phenols $\mathbf{5} \mathbf{h}$-d in $\mathbf{5 2 - 8 2 \%}$ yields (entries $2-4$). The reaction of $\mathbf{1 a}$ and propiophenone ($\mathbf{2 e}$) also produced 5 e in good yield (71%. entry 5). The reaction of $1 \mathbf{1 a}$ and acetophenone ($\mathbf{2 1}$) also produced desired compound $\mathbf{5 i}$ (47%, entry 6). The reaction of $\mathbf{1 b}$ and 2 a gave pentasubstituted phenol 5 g in 78% (entry 7). The reaction of $\mathbf{1 c}$ and 2 a required longer reaction time (5 h) than for other entries, and we isolated 5 h in $\mathbf{4 8 \%}$ yield (entry 8).

However, the reaction of $\mathbf{1 a}$ and $\mathbf{2 g}{ }^{6 \mathrm{bb}}$ was failed completely to produce the corresponding phenol compound $\mathbf{5 i}$ (Scheme 2). In the reaction, we obtained 3i (the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ product) in 79% yield and this compound was not converted to 5i presumably due to the increased steric hindrance around the benzoyl moiety.

In summary we disclosed an efficient synthetic procedure for poly-substituted phenol derivatives starting from the Baylis-Hillman adducts. The reaction afforded phenol derivatives regioselectively in moderate to good yields in a one-pot from the readily available starting materials.

Experimental Section

Typical procedure for the synthesis of compound 5 a : To a stirred solution of $1 \mathrm{a}(218 \mathrm{mg} .1 .0 \mathrm{mmol}$) and deoxybenzoin ($2 \mathbf{a}, 196 \mathrm{mg} .1 .0 \mathrm{mmol}$) in DMF (2 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($415 \mathrm{mg}, 3.0 \mathrm{mmol}$) and the reaction mixture was heated to $110-120^{\circ} \mathrm{C}$ for 1 h . After the usual aqueous workup and column chromatographic purification process

Scheme 1

Table 1. Synthesis of poly-substituted phenols ${ }^{a}$

"Conditions: Baylis-Hillman acetate $1(1.0 \mathrm{mmol})$, ketone $2(1.0 \mathrm{mmol}) . \mathrm{DMF}_{2} \mathrm{~K}_{2} \mathrm{CO}_{3}(3.0 \mathrm{mmol}) .110-120{ }^{\circ} \mathrm{C}$. $1-2 \mathrm{~h}$. "Acetophenone (2.0 equif) was used. 'Intractable side products formed. 'Reaction time is 5 h .

(hexanes/EtOAc, 15:1) we obtained compound 5a (293 mg. 87%) as a pale yellow solid. The spectroscopic data of prepared compounds 3a. 3 i and $5 \mathbf{a}-\mathrm{h}$ are as follows.

Compound 3a: 78\%: colorless oil: IR (film) 1680. 1664. $1246 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 2.36$ (s. 3 H). $3.15-3.29(\mathrm{~m} .2 \mathrm{H}), 4.91(\mathrm{dd}, J=9.0$ and 6.0 Hz .1 H$), 6.99-$ $7.03(\mathrm{~m} .2 \mathrm{H}) .7 .04-7.07(\mathrm{~m} .2 \mathrm{H}) .7 .09-7.14(\mathrm{~m} .3 \mathrm{H}) .7 .27-$ $7.36(\mathrm{~m} .5 \mathrm{H}) .7 .40-7.44(\mathrm{~m}, 1 \mathrm{H}) .7 .46$ (s. 1H). 7.85-7.88 (m. $2 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 26.16,30.03,51.50$. 126.94. 128.28, 128.34. 128.38. 128.50, 128.58. 128.69. 128.74. 132.72. 135.37. 136.53. 138.42, 139.92. 142.32. 199.49. 200.65: ESIMS mz $355\left(\mathrm{M}^{+}+1\right)$.

Compound 3i: 79\%: colorless oil; IR (film) $1685,1666$. $1491.1246 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.20(\mathrm{~s}$. $3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s} .3 \mathrm{H}), 3.24-3.27(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{dd}$. $J=8.7 \mathrm{~Hz}$ and 6.6 Hz .1 H). $6.92-6.97(\mathrm{~mm} .3 \mathrm{H}) .7 .02-7.13$
(m, 6H). 7.20-7.21 (m. IH). 7.31-7.35 (m. 3H). 7.44 (s. IH): ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 20.17,20.86 .26 .10,29.40$. $54.31 .126 .89 .128 .29,128.38$ (2C). 128.57. 128.63, 128.74, 131.29. 131.44. 134.63. 134.74, 135.45, 137.60. 138.33. 140.08, 141.88. 200.55. 203.71: ESIMS $m z 383\left(\mathrm{M}^{+}+1\right)$.

Compound 5a: 87%; pale yellow solid, mp $106-108{ }^{\circ} \mathrm{C}$: IR (film) 3531. 1601, 1493. 1481, $1227 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 300 MHz) $\delta 4.06(\mathrm{~s}, 2 \mathrm{H}) .5 .01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.84(\mathrm{~s} .1 \mathrm{H}) .7 .05-$ $7.33(\mathrm{~m} .16 \mathrm{H}):{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 36.15,117.68$, $126.02,126.28$. 126.37. 126.46, $127.76,127.82$. 128.65, $128.75,129.74 .129 .93 .133 .17,133.32,139.84$. 140.03. 141.02, 141.17, 153.04: ESIMS mz $337\left(\mathrm{M}^{+}+1\right)$. Anal Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}: \mathrm{C} .89 .25 ; \mathrm{H}, 5.99$. Found: C. $89.03 ; \mathrm{H} .6 .12$.

Compound 5b: 73\%: white solid, mp $42-44^{\circ} \mathrm{C}$; IR (film) 3529. 3410. 3028. 2935. 1608. 1493. $1246 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 3.76(\mathrm{~s}, 3 \mathrm{H}) .3 .77(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s} .2 \mathrm{H})$,
$4.79(\mathrm{~s}, \mathrm{IH}) .6 .72-6.77(\mathrm{~m} .4 \mathrm{H}), 6.80(\mathrm{~s}, \mathrm{IH}) .6 .97-7.05(\mathrm{~m}$. $4 \mathrm{H}), 7.15(\mathrm{~s} . \mathrm{H}) .7 .18-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=4.5 \mathrm{~Hz}$. $4 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 36.19,55.15$ (2C). $113.30,113.34,117.58$. 125.82. 126.38, 128.66, 128.73. 130.76. 130.89, 132.88. 133.12. 133.56, 133.77. 139.53. 139.87. 152.74, 157.93. 158.23. ESIMS $m=397\left(\mathrm{M}^{+}+\mathrm{L}\right)$. Anal Caled for $\mathrm{C}_{27} \mathrm{H}_{2} 4 \mathrm{O}_{3}: \mathrm{C}, 81.79 ; \mathrm{H} .6 .10$. Found: C . 81.87; H, 6.22.

Compound 5c: 82% : pale yellow solid, mp $123-125^{\circ} \mathrm{C}$; IR (film) $3437,1614,1481,1227 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl 3,300 $\mathrm{MHz}) \delta 4.06(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}) .7 .01-7.08$ $(\mathrm{m}, 4 \mathrm{H}), 7.14-7.25(\mathrm{~m} .7 \mathrm{H}) .7 .30-7.32(\mathrm{~m}, 4 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 36.23$. 117.54. 126.26. 126.51. 126.59. 127.96. 128.08, 128.71. 128.74. 129.90, 131.00. 132.58. 133.34. 133.39, 138.76, 139.46. 139.57. 140.81. 153.10: ESIMS mz $371\left(\mathrm{M}^{+}+1\right)$

Compound 5d: 52%, pale yellow solid, mp $58-60^{\circ} \mathrm{C}$; IR (film) 3533. 3390. 2924. 1485. 1261, 1230, $1018 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.02(\mathrm{~s}, 2 \mathrm{H}) .4 .82$ (br s. IH$)$. $5.55(\mathrm{~d}, J=3.3 \mathrm{~Hz} . \mathrm{H}) .6 .20$ (dd. $J=3.6$ and $1.8 \mathrm{~Hz}, \mathrm{IH})$. 7.06 (s. 1H), 7.19-7.36 (m. 12H): ${ }^{13} \mathrm{C}$ NMR (CDCl3, 75 $\mathrm{MHz}) \delta$ 36.14, 108.89. 111.24, 113.82, 126.24. 126.41. 126.89. 128.21, 128.67 (2C). 128.81, 129.37. 132.37. 133.39, 139.67. $141.26,1+1.68$. 152.39. 153.07. ESIMS mz $327\left(\mathrm{M}^{-}+\mathrm{I}\right)$.
Compound 5e: 71%; sticky oil: IR (film) 3527. 2924. $1489.1452 .1232 \mathrm{~cm}^{-1}$, ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.16$ $(\mathrm{s} .3 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}) .4 .66(\mathrm{br} \mathrm{s} 1 \mathrm{H}),. 6.67(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}$. $1 \mathrm{H}), 7.18-7.41(\mathrm{~m} .10 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta$ 19.45. 36.07, $117.06,125.89,126.31,126.75$. 127.48. 128.02. 128.63, 128.72. 129.08. 132.72, 140.06. 141.19. 141.48, 151.45; ESIMS mz $275\left(\mathrm{M}^{+}+1\right)$.

Compound 5f: 47%; sticky oil: IR (film) 3533, 3417. 2924. 1570. $1489,1410.1228 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} .300$ $\mathrm{MHz}) \delta 4.03(\mathrm{~s}, 2 \mathrm{H}) .4 .80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=1.5 \mathrm{~Hz}$. $1 \mathrm{H}), 7.11-7.35(\mathrm{~m} .8 \mathrm{H}), 7.41(\mathrm{t} . J=7.2 \mathrm{~Hz} .2 \mathrm{H}), 7.55(\mathrm{~d} . J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 36.13,114.42$. $119.73,126.03,126.42$. 126.94, 127.29, 128.69. 128.71 (2C). 131.28, 139.74, 140.57, 141.14, 153.95, ESIMS mz $261\left(\mathrm{M}^{-}+\mathrm{I}\right)$.
Compound 5g: 78% : pale yellow solid. $\mathrm{mp} 86-88^{\circ} \mathrm{C}$: IR (film) $3570.3059,3026,1601,1493.1265 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.03(\mathrm{~s} .3 \mathrm{H}), 4.07(\mathrm{~s} .2 \mathrm{H}), 4.76(\mathrm{~s}, \mathrm{IH})$. $6.98-7.03(\mathrm{~m} .4 \mathrm{H}), 7.05-7.09(\mathrm{~m} .4 \mathrm{H}) .7 .15-7.26(\mathrm{~m} .4 \mathrm{H})$. 7.32-7.34 (m, 4 H$):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.67$. 36.94. 122.35. 125.31. 125.64. 126.30. 126.54. 127.36. 127.63. 128.76 (2C), 129.78. 129.92. 130.65. 134.13. 139.60. 140.14. 140.23, 141.98, 151.53: ESIMS $m z 351$ $\left(\mathrm{M}^{+}+1\right)$.
Compound $\mathbf{5}$: 48%; pale yellow solid, mp $80-82^{\circ} \mathrm{C}$; IR (film) $3417,2954.2925,1481.1223 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$.
$300 \mathrm{MHz}) \delta 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz} .3 \mathrm{H}), 1.30-1.46(\mathrm{~m} .6 \mathrm{H})$, $1.63-1.71(\mathrm{~m} .2 \mathrm{H}), 2.67(\mathrm{t} . J=7.5 \mathrm{~Hz} .2 \mathrm{H}), 4.80($ br s. 1 H$)$, $6.84(\mathrm{~s}, \mathrm{IH}) .7 .08-7.21(\mathrm{~m} .11 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ $\mathrm{MHz}) \delta 14.10 .22 .62 .29 .33,29.73,29.83 .31 .74 .117 .14$, $125.99,126.40$. 127.76 . $127.81,127.84,129.77$. 129.95, 132.47, 133.22, 139.26. 141.11. 141.37. 152.72. ESIMS mz $331\left(\mathrm{M}^{+}+\mathrm{l}\right)$.

Acknowledgments. This study was financially supported by Chomam National University (2007). Spectroscopic data was obtained from the Korea Basic Science Institute, Gwangiu branch.

References and Notes

1. For the synthesis of poly-substituted phenols using condensation process and their biological activity, see: (a) Nakaike. Y.: Kamijo. Y.: Mori. S.: Tamura. M.: Nishiwaki. N.: Ariga. M. J. Org. Chent. 2005. 70, 10169-10171. (b) Katrizky. A. R.: Dmytro. Y. J.; Tymoshenko, D. O.: Fang. Y:; Hylton. K.-G. ARKII OC 2001. (iv). 20-28. (c) Covarrubias-Zuniga, A.; Rios-Barrios, E. J. Org. Chem. 1997. 62. 5688-5689. (d) Serra. S.: Fuganti. C.: Brenna. E. Chen. Eur: J. 2007. 13. 6782-6791. (e) Collomb. D.: Doutheau. A. Tetrahedron Lett. 1997. 38. 1397-1398. (f) Brenna. E.: Fuganti. C.; Serra. S. J. Chem. Soc., Perkin Trans. I 1998, 901-904.
2. For the synthesis of poly-substituted phenols using transition metal catalysis and their biological activity, see: (a) Gevorgyan. V.: Quan. L. G.: Yamamoto. Y. J. Org. Chent 1998. 63. 12441247. (b) Maddirala. S. J.: Odedra. A.: Taduri. B. P.: Liu. R.-S. Sphlet 2006. 1173-1176. (c) Fukuhara. K.: Takayama. Y.: Sato. F. J. Am. Chem. Soc. 2003. 125,6884-6885. (d) Padwa. A.: Xu. S. L. J. Am. Chem. Soc. 1992, 114.5881-5882. (e) Moreno. A.: Gomez. M. V.: Vazquez. E.; de la Hoz. A.; Diaz-Oritz. A.; Prieto, P.; Mayoral. J. A.: Pires. E. Sinlett 2004. 1259-1263. (f) Collomb. D.: Doutheau. A. Tetrahedrom Letl. 1997. 39. 1397-1398. (g) Romero. C.: Pena. D.: Perez. D.: Guitian. E. Chent. Em: J. 2006. 12. 56785684.
3. For the synthesis of poly-substituted phenols from Baylis-Hillman adducts, see: (a) Park, D. Y.: Kim. S. J.: Kim. T. H.: Kim. J. N. Tetrahedron Lett. 2006. 47. 6315-6319. (b) Kim. S. C.: Lee. H. S.: Lee. Y. T.: Kim1. J. N. Terrahedron Letl. 2016. 47. 5681-5685. (c) Lee. K. Y: Na. J. E.: Kim. T. N. Bull. Korean Chem. Soc. 2003. 24. 409-410. (d) Kim. J. N.; Im. Y. J.: Kim. J. M. Tetrahedron Lett. 2002. 43, 6597-6600.
4. Kim. S. J.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2007. 48. 1069-1072
5. For the synthesis and synthetic applications of Baylis-Hillman acetates 1a-c. see: (a) Lee. M. J.: Kiml. S. C.: Kim. T. N. Bidl. Korean Chem. Soc. 2006, 27. 439-4i2. (b) Park. D. Y;: Lee. K. Y:; Kim. J. N. Tetrahedron Lett. 2007. 48, 1633-1636. (c) Kim. S. J.; Kim. H. S.: Kim, T. H.: Kim. J. N. Bull. Konam Chem. Soc. 2007. 28. 1605-1608.
6. The starting materials were purchased from the commercial sources (2a-c. 2e. 2f) or synthesized easily by the Friedel-Crafts acylation of the corresponding acid chlorides and arenes ($\mathbf{2 d}{ }^{\text {ia }}$ and $2 \mathrm{~g}^{\text {h }}$). (a) Inaba. S.-i.: Rieke, R. D. J. Org. Chem. 1985, 50, $1373-$ 1381. (b) Kim. T. Y.: Kim, H. S.; Chung, Y. M.; Kim, J. N. Bull. Korean Chem. Soc. 2000. 21. 673-674.
