Synthesis of Poly-substituted 2-Pyridones via [3+2+1] Annulation Protocol from Baylis-Hillman Adducts

Sung Hwan Kim, Sangku Lee, ${ }^{*}$ Se Hee Kim, and Jae Nyoung Kim ${ }^{*}$
Deparment of Chemistry and Institute of Basic Science, Chomam Vational Lnwersity, Gwangiu 500-757, Korea
E-mail: kiminachonnam.ackr
- הatural Medicine Research Center, KRIBB, Daejeon 305-806, Korea Received Mav 28, 2008

Key Words: 2-Py ridones. Bay lis-Hillman adducts. [3+2+1] Annulation. $\mathrm{NH}_{4} \mathrm{OA} \mathrm{Ac}$

The synthesis of a substituted 2-pyridone ring is an area of continuing interest due to its abundance in many biologically important compounds containing this moiety. ${ }^{1 \cdot \frac{1}{3}}$ Although numerous papers have been reported on the synthesis of this class of compounds. ${ }^{1 \cdot 3}$ development of a new and efficient synthetic procedure is still required.

Recently. we reported an efficient synthetic method for poly-substituted pyridines from the combination of BaylisHillman adducts (3 carbons), activated methylene compounds (2 carbons) and ammonium acetate (1 nitrogen) via $[3+2+1]$ annulation protocol in good yields. regioselectively. ${ }^{4}$ In the previous paper, we used Baylis-Hillman adducts derived from methyl sinyl ketone and obtained 2 methyl pyridine derivatives. ${ }^{4}$ In continuation of our research. we intended to prepare the valuable poly-substituted 2 pyridones ${ }^{1 \cdot 3}$ by using the Baylis-Hillman adducts of methyl acrylate 1a as shown in Scheme 1 .

The starting material 3a was synthesized from the reaction of Baylis-Hillman acetate 1a and methyl acetoacetate (2a) in 77% yield. ${ }^{5}$ The ester $\mathbf{3 a}$ indeed produced 2 -pyridone $7 \mathbf{a}$. albeit in low yield (16%). along with three other products, ta $(3+\%) .5 \mathbf{a}(7 \%)$ and $6 \mathbf{a}(5 \%)$, when subjected to the conditions previously employed for the synthesis of pyridine derivatives $\left(\mathrm{NH}_{4} \mathrm{OAc}\left(3.0\right.\right.$ equiv)/ $\mathrm{AcOH} /$ reflux). ${ }^{4}$ Increasing
the reaction temperature or varying the solvent (propionic or butyric acid) did not improve the results. The use of $\mathrm{NH}_{4} \mathrm{Cl}$ or $\mathrm{NH}_{4} \mathrm{OH}$ was also not effective.

Fortunately, during the examinations we found that the use of excess amounts of $\mathrm{NH}_{4} \mathrm{OAc}$ afforded good yield of 7 a . The reaction gave much better yield of $7 \mathrm{a}(75 \%)$, while suppressing the formation of by-products ta (4\%), 5a (1$2 \%$) and $6 \mathrm{a}(5 \%)$. when 3 a was heated in AcOH with 20 equiv of $\mathrm{NH}_{4} \mathrm{OAc}$. The use of excess amounts of $\mathrm{NH}_{4} \mathrm{OAC}$ might be beneficial for the isomerization of $4 a$ to $7 a,{ }^{5}$ although the reason is not clear at this stage. Encouraged by the results we prepared starting materials $\mathbf{3 h}-\mathrm{g}$ similarly from ethyl acetoacetate ($\mathbf{2 b}$). 2,4-pentanedione ($\mathbf{2 c}$). methanesulfonylacetone (2d). 1,3-cyclohexanedione (2e). deoxybenzoin (20), and 1,3 -indandione (2 g) in $56-85 \%$ yields. The syntheses of $7 \mathrm{~h}-\mathrm{g}$ were carried out by the same method for $7 \mathbf{a}$ and the results are summarized in Table 1 .

Various 2-pyridone derivatives $7 \mathrm{~h}-\mathrm{g}$ were synthesized in $64-82 \%$ yields including bicyclic (entry 5) and tricyclic compound (entry 7). In all cases trace amounts of the corresponding benzylidene compounds, alcohols. and benzoyl derivatives were observed on TLC. but we didn't isolate them except entry 1 (vide supra, Scheme l). The formation of alcohol 5 a and benzoyl derivative $\mathbf{6 a}$ could be explained

Scheme 1

Table 1. Synthesis of various pyridin-2-ols"
Entry

Conditions: Substrate 3 (1.0 mmol), $\mathrm{NH}_{4} \mathrm{OAc}(20$ equiv), AcOH, reflux, $8-72 \mathrm{~h}$.
by the aerobic oxidation of ta tentatively. ${ }^{7.9}$
We obtained alkylidene derivative th in low yield (37\%) when we used 3h as the starting material (Scheme 2). In addition. we isolated 8 ($13 \%, E Z$ mixture) and remaining starting material $\mathbf{3 h}(17 \%)$. Isomerization of the double bond of $\mathbf{t h}$ was not effective under the reaction conditions. Although desired compound 7 h was observed in trace amounts on TLC, we could not isolate 7 h in pure form. Thus we made 7 h (65%) by treatment of $\mathbf{4}$ with DBU (2.0 equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 2 h by double bond isomerization. ${ }^{6}$
In summary, we disclosed an efficient synthetic method of poly-substituted 2-pyridones from the combination of BaylisHillman adducts (3 carbons) activated methy lene compounds (2 carbons) and ammonium acetate (1 nitrogen) vio $\lceil 3+2+1\rceil$
annulation protocol in good yields. in a highly regioselective fashion.

Experimental Section

Typical procedure for the synthesis of compound 3a. ${ }^{5}$ To a stirred mixture of $\mathbf{1 a}(234 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathbf{2 a}$ (128 mg , 1.1 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (152 mg. 1.1 mmol) and the resulting mixture was stirred at room temperature for 5 h . After the usual aqueous workup and column chromatographic purification process (hexanes/ ether. $8: 1$) we obtained 3 a ($224 \mathrm{mg} .77 \%$) as colorless oil. Other compounds 3 b -h were synthesized similarly in 56$85 \%$ yields. The spectroscopic data of unknown compounds 3a. 3b. 3d. 3f. 3g. and 3h are as follows (The compounds

Scheme 2

Votes
$3 \mathrm{c}^{5 \mathrm{f}}$ and $3 \mathrm{e}^{\mathrm{sb}}$ are known compounds).
Compound 3a. 77\%: colorless oil: IR (film) 1744, 1715. 1436. 1260. $1097 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.14$ $(\mathrm{s} .3 \mathrm{H}) .3 .04-3.25(\mathrm{~m} .2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}) .3 .82(\mathrm{~s} .3 \mathrm{H}), 3.81-$ 3.86 (m. IH). 7.29-7.42 (m. 5H). 7.78 (s. 1 H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 25.42,28.72 .52 .07,52.24,58.06$. 128.53. 128.65, 128.91. 129.00. 134.88, 141.86. 167.96. 169.63, 201.99; ESIMS $m z 289\left(\mathrm{M}^{+}-1\right)$.

Compound 3b. 78\%: colorless oil; IR (film) 1738. 1716. 1436. 1260. $1097 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.14$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) .3 .04-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.80-$ $3.85(\mathrm{~m} .1 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.94-4.15(\mathrm{~m} .2 \mathrm{H}), 7.30-7.42(\mathrm{~m}$. $5 \mathrm{H}), 7.77(\mathrm{~s} .1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.83$. $25.40 .28 .66,52.06,58.20,61.36,128.54,128.65$. 129.01. 129.07, 134.90. 141.74, 168.00. 169.24. 202.10. ESIMS mz 303 ($\mathrm{M}^{-}-1$).

Compound 3d. 85\%: colorless oil; IR (film) 1718. 1709. 1437. 1311, 1264. $1114 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta$ $2.28(\mathrm{~s} .3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}) .3 .26 \cdot 3.30(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$. $4.32-4.36(\mathrm{~m} .1 \mathrm{H}) .7 .35-7.47(\mathrm{~m} .5 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (CDCll, $75 \mathrm{MHz}) \delta 25.04 .31 .70 .37 .53 .52 .34 .72 .28$. 127.00. 128.83, 128.94. 129.16. 134.33, 143.04. 167.55. 200.93; ESIMS $m z 309\left(\mathrm{M}^{+}-1\right)$.

Compound 3f. 81%; white solid. $\mathrm{mp} 86-87^{\circ} \mathrm{C}$; IR (film) $1704,1683,1447.1254,1205,1093 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR (CDCl_{3}. $300 \mathrm{MHz}) \delta 3.18-3.32(\mathrm{~m}, 2 \mathrm{H}), 3,76(\mathrm{~s}, 3 \mathrm{H}), 4.89-4.94(\mathrm{~m}$. $1 \mathrm{H}), 7.03-7.17(\mathrm{~m} .7 \mathrm{H}), 7.21-7.27(\mathrm{~m} .3 \mathrm{H}), 7.31-7.37(\mathrm{~m}$. $2 \mathrm{H}), 7.41-7.47$ (m. 1H), 7.65 (s. 1 H). $7.86-7.90(\mathrm{~m} .2 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta$ 30.91. 51.97. $52.15,127.04$. 128.09. 128.25, 128.42. 128.51. 128.65, 128.70. 128.76. 130.37. 132.77, 135.36. 136.47. 138.25, 141.71. 168.64. 199.27, ESIMS $m \geq 369\left(\mathrm{M}^{+}-1\right)$.

Compound 3g. 56\%; yellow oil; IR (film) 1744, 1709. $1435.1259 .1214 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.13$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .3 .45(\mathrm{t} . J=7.8 \mathrm{~Hz} .1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$. $7.27-7.43(\mathrm{~m} .5 \mathrm{H}), 7.79-7.85(\mathrm{~m} .2 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.91 \cdot$ 7.97 (m. 2H): ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 24.83 .51 .82$. 52.01. 123.20. 128.57. 128.59. 129.02. 129.23. 135.21. 135.54. 141.21. 141.99. 168.17, 199.44: ESIMS mz 319 $\left(\mathrm{M}^{+}-1\right)$.
Compound 3h. 62\%: colorless oil: IR (film) 1747. 1719. 1436. 1224. $1148 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 0.87-$ 0.92 (m. 3H), 1.24-1.46 (m. 6H). 2.19-2.26 (m. 2H). 2.42 (s. $3 \mathrm{H}) .2 .73-2.90(\mathrm{~m} .2 \mathrm{H}) .3 .70(\mathrm{~s} .3 \mathrm{H}) .3 .74(\mathrm{~s} .3 \mathrm{H}) .3 .80-3.85$ (m. 1H) , 6.87 (t. $J=7.5 \mathrm{~Hz} .1 \mathrm{H}$): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 13.91,22.43,25.40 .28 .36 .28 .60,29.45 .31 .48$. $51.73 .52 .31,58.02,127.60 .146 .58,167.62,169.76 .202 .45$.
Typical procedure for the synthesis of compound 7a. A mixture of 3 a (145 mg .0 .5 mmol) and $\mathrm{NH}_{4} \mathrm{OAc}$ ($770 \mathrm{mg}, 10$ mmol) in $\mathrm{AcOH}(4 \mathrm{~mL})$ was heated to reflux for 15 h . After the usual aqueous workup and column chromatographic purification process ($\mathrm{CHCl}_{3} / \mathrm{EtOAc}, 8: 1$) we obtained 7 a (97 mg. 75\%) as a white solid. Other compounds 7b-g and th were synthesized similarly ($37-82 \%$). Spectroscopic data of prepared compounds 7a-d. 7f. 7g. 4a. 5a. 6a. 4h. 7h. and 8 are as follows (The compound $7 \mathrm{e}^{3 \mathrm{c}}$ is known).

Compound 7a. 75% white solid, mp $216-217^{\circ} \mathrm{C}$: IR
(KBr) 3412, 1716. 1655. 1280, 1236. $1086 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{5} .300 \mathrm{MHz}\right) \delta 2.52(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}$, 2 H). $7.18 \cdot 7.33$ (m, 5 H). 7.65 (s. 1 H), 12.08 (br s. 1 H): ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6} .75 \mathrm{MHz}\right) \delta 16.57,32.93,49.48,103.92$, $124.03,126.20$. $126.30,126.73$. 136.00. 137.81, 149.11. 160.67, 163.11; ESIMS $m z 256\left(\mathrm{M}^{-}-1\right)$. Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}$: C. 70.02 : H. 5.88 ; N, 5.44 . Found: C. 70.29 ; H, 5.77; N, 5.26.

Compound 7b. 71%; white solid, mp $194-195^{\circ} \mathrm{C}$; IR (KBr) 3412, 1708, 1655. 1279, 1231. $1082 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{5} .300 \mathrm{MHz}\right) \delta 1.23(\mathrm{t}, J=6.9 \mathrm{~Hz} .3 \mathrm{H}) .2 .50(\mathrm{~s}$, $3 \mathrm{H}) .3 .7 \mathrm{I}(\mathrm{s} .2 \mathrm{H}), 4.17(\mathrm{q} . J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.30(\mathrm{~m}$, 3 H). 7.63 (s, IH). 12.03 (br s. IH); ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\mathrm{d}_{6}, 75$ $\mathrm{MHz}) \delta 14.13,18.51$. 34.81. 60.07. 106.04, 125.98. 128.11, $128.26,128.66 .138 .02 .139 .78,150.93,162.58,164.67$: ESIMS $m \geq 270\left(\mathrm{M}^{-}-1\right)$. Anal Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}: \mathrm{C}$, 70.83: H. 6.32: N, 5.16. Found: C. 70.56: H. 6.54: N, 5.02.

Compound 7c. 68% white solid, mp $184-185{ }^{\circ} \mathrm{C}$; IR (KBr) 3432, 1683. 1650. 1568, 1275. $1231 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR (DMSO-d 5.300 MHz$) \delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}$, $2 \mathrm{H}) .7 .14-7.28(\mathrm{~m}, 5 \mathrm{H}) .7 .81(\mathrm{~s}, 1 \mathrm{H}), 11.99(\mathrm{br} \mathrm{s} .1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6} .75 \mathrm{MHz}\right) \delta 19.74 .29 .86 .35 .83,115.33$, $126.66,128.20$. 128.93. 129.34, 139.69, 140.70. 150.84, 162.96, 196.48; ESIMS $m z 240\left(\mathrm{M}^{+}-1\right)$. Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$: C. 74.67 : H. 6.27 ; N, 5.81 . Found: C. $74.48 ; \mathrm{H}$, 6.03; N, 5.77.

Compound 7d. 64%; white solid, mp $266-267^{\circ} \mathrm{C}$; IR (KBr) 3412. 1652, 1605, 1302, 1159, $1131 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{5} .300 \mathrm{MHz}\right) \delta 2.51(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}$, $2 \mathrm{H}) .7 .16-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.5 \mathrm{I}(\mathrm{s} .1 \mathrm{H}), 12.26$ (br s. 1 H$)$: ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }^{\text {. }} .75 \mathrm{MHz}$) $\delta 17.94$. $35.64 .44 .92,116.83$, 126.86, 129.07. 129.50. 129.51, 136.61, 140.08. 149.69. 163.20: ESIMS $m z 276\left(\mathrm{M}^{-}-1\right)$. Anal Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}$: C. 60.63 : H. 5.45 ; N, 5.05 . Found: C. 60.44 ; H, 5.53 : N. 5.24 .

Compound 7f. 82% : white solid. mp 272-273 ${ }^{\circ} \mathrm{C}$: IR (KBr) 3415. 1652. $1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d. 600 $\mathrm{MHz}) \delta 3.82(\mathrm{~s} .2 \mathrm{H}) .6 .97-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.37(\mathrm{~m} .13 \mathrm{H})$, 7.35 (s. 1H). 11.77 (br s. 1 H): ${ }^{13} \mathrm{C}$ NMR (DMSO-d $6,75 \mathrm{MHz}$) $\delta 35.97$. 126.72, 127.13, 128.75, 128.88. 129.02, 129.41, $129.65,130.10 .130 .45,138.85,140.78,141.40 .162 .70$. four carbons were overlapped: ESIMS $m=336\left(\mathrm{M}^{-}-1\right)$. Anal Calcd for $\mathrm{C}_{44} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C} .85 .43$: H, 5.68 : N, 4.15. Found: C, 85.30: H. 5.88: N, 4.26.

Compound $7 \mathrm{~g} .65 \%$. yellow solid. mp $347-348^{\circ} \mathrm{C}$: IR (KBr) $3407.1714,1634,1616.1576 .1406,1140 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO-d 6.300 MHz) d $3.75(\mathrm{~s}, 2 \mathrm{H}), 7.18-7.33(\mathrm{~m}$, 5 H). 7.37 (s. IH). 7.46 (qd. $J=7.2$ and 0.9 Hz .1 H), $7.50-$ $7.52(\mathrm{~m}, 1 \mathrm{H}) .7 .60(\mathrm{td} . J=7.2$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}) .7 .81$ (d. $J=$ 7.2 Hz .1 H). 13.22 (br s. 1 H): ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\mathrm{d}_{6} 75$ $\mathrm{MHz}) \delta 35.58$. 121.08 , 122.81. 126.15, 128.37. 128.91, $130.35,130.91$. 131.60. 133.73, 134.03, 136.32. 139.46, 156.94, 163.51. 188.17. ESIMS $m z 286\left(\mathrm{M}^{-}-1\right)$. Anal Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{2}: \mathrm{C} .79 .43$; H. 4.56 ; N. 4.88. Found: C, 79.62 : H. 4.38; N. 4.84.

Compound 4a. 34% : pale yellow solid. $\mathrm{mp} 142-143^{\circ} \mathrm{C}$: IR (KBr) $3420,3207.1715 .1633,1614.1368 .1236,1089$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 2.35(\mathrm{~s}, 3 \mathrm{H}) .3 .75(\mathrm{~s}$,

3 H), 3.77-3.78 (m. 2H), 7.35-7.51 (m. 5 H), 7.56 (br s. IH). $7.82(\mathrm{t}, J=2.7 \mathrm{~Hz} .1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 19.07. 28.09, 51.40, 101.67, 125.62. 128.57, 129.02, 130.40. 135.06. 138.08. 143.95, 165.77, 167.34: ESIMS mz 256 $\left(\mathrm{M}^{+}-1\right)$.

Compound 5a. 7% : pale yellow solid, mp $198-199^{\circ} \mathrm{C}$. IR (KBr) 3436. 1716, 1649, 1433. 1289, $1092 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (DMSO-d $6,300 \mathrm{MHz}) \delta 2.52(\mathrm{~s} .3 \mathrm{H}) .3 .75(\mathrm{~s} .3 \mathrm{H}) .5 .93$ (s. $1 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.9 \mathrm{I}(\mathrm{s}, 1 \mathrm{H}), 11.99(\mathrm{~s}, 1 \mathrm{H}), 12.17(\mathrm{br}$ s. 1 H) ${ }^{13} \mathrm{C}$ NMR (DMSO-d. 75 MHz) δ 18.49. 18.63. 51.58 . 51.66. 68.28, 82.03. 105.92. 126.49, 126.81. 126.86. 127.52. 127.92, 128.02. 128.28. 131.92, 135.44. 136.84. 138.53. 144.06, 151.48. 152.38. 161.40, 161.47. 165.07. 165.21; ESIMS $m z 272\left(\mathrm{M}^{+}-1\right)$.

Compound 6a. 5%; white solid, mp $234-235^{\circ} \mathrm{C}$: IR (KBr) 3415. 1722. 1663, 1652, 1600. 1256, 1198, 1082 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6} .300 \mathrm{MHz}$) $\delta 2.62(\mathrm{~s}, 3 \mathrm{H}), 3.76$ $(\mathrm{s} .3 \mathrm{H}) .7 .49(\mathrm{t} . J=7.2 \mathrm{~Hz} .2 \mathrm{H}), 7.63(\mathrm{t} . J=7.2 \mathrm{~Hz}, \mathrm{IH})$. 7.75 (d. $J=7.2 \mathrm{~Hz} .2 \mathrm{H}), 8.10(\mathrm{~s} .1 \mathrm{H}), 12.56$ (br s. IH): ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right) \delta$ 19.11. 51.80, 106.23, 125.66. 128.43. 129.13, 133.12. 137.02. 143.07, 157.32. 160.31. 164.49, 193.38, ESIMS $m z 270\left(\mathrm{M}^{+}-1\right)$.

Compound th. 37%; white solid, mp $157-158^{\circ} \mathrm{C}$; IR (KBr) $3412,3199.1712,1638,1365.1225 .1087 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 0.88-0.92(\mathrm{~m}, 3 \mathrm{H}) .1 .30-1.36(\mathrm{~m}$. $4 \mathrm{H}), 1.45-1.55(\mathrm{~m} .2 \mathrm{H}), 2.14-2.22(\mathrm{~m} .2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$. $3.36-3.38(\mathrm{~m} .2 \mathrm{H}), 3.75(\mathrm{~s} .3 \mathrm{H}), 6.90-6.97(\mathrm{~m}, 1 \mathrm{H}), 8.65(\mathrm{~s}$. $1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 13.91,18.87,22.43$. $26.13 .27 .83,28.33,31.53,51.22,101.65,125.39 .142 .82$. 144.65. 165.45, 167.52; ESIMS $m z 250\left(\mathrm{M}^{-}-1\right)$.

Compound $7 \mathrm{~h} .65 \%$; white solid, mp $105-106^{\circ} \mathrm{C}$; IR (KBr) 3436. 1722, 1663, 1239. $1084 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR (CDCl_{3}. $300 \mathrm{MHz}) \delta 0.87-0.91(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.40(\mathrm{~m} .6 \mathrm{H}), 1.55-$ $1.62(\mathrm{~m}, 2 \mathrm{H}) .2 .5 \mathrm{I}(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}) .3 .85(\mathrm{~s}$. 3 H), 7.82 (s, 1H), 12.76 (br s. IH); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ $\mathrm{MHz}) \delta 14.07,19.33,22.55 .28 .26 .29 .01,29.54 .31 .64$. $51.69 .108 .22,129.57,138.77,150.02,165.20,165.78$: ESIMS $m z 250\left(\mathrm{M}^{-}-1\right)$. Anal Calcd for $\mathrm{C}_{14} \mathrm{H}_{31} \mathrm{NO}_{3}: \mathrm{C}$. 66.91: H. 8.42: N. 5.57. Found: C. 66.88: H, 8.30: N. 5.46.

Compound 8. 13% ($E Z, 1: 1$): colorless oil: IR (KBr) 2928. 2857, 1717. $1199 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1.5 \mathrm{H}) .0 .89(\mathrm{t} . J=6.9 \mathrm{~Hz}, 1.5 \mathrm{H}) .1 .26-$ $1.46(\mathrm{~m}, 6 \mathrm{H}), 2.13(\mathrm{~s}, 1.5 \mathrm{H}), 2.14(\mathrm{~s}, 1.5 \mathrm{H}), 2.19(\mathrm{q}, J=7.5$ $\mathrm{Hz} .1 \mathrm{H}) .2 .41(\mathrm{q} . J=7.5 \mathrm{~Hz} .1 \mathrm{H}) .2 .48-2.62(\mathrm{~m} .4 \mathrm{H}) .3 .73$ (s. $1.5 \mathrm{H}) .3 .74(\mathrm{~s} .1 .5 \mathrm{H}) .5 .97(\mathrm{t} . J=7.5 \mathrm{~Hz} .0 .5 \mathrm{H}) .6 .79(\mathrm{t} . J=$ $7.5 \mathrm{~Hz}, 0.5 \mathrm{H})$.

Acknowledgments. This work was supported by the Korea Research Foundation Grant funded by the Korean Govenment (MOEHRD. KRF-2007-313-C00417). Spectroscopic data were obtained from the Korea Basic Science Institute. Gwangiu branch.

References and Notes

1. For the synthesis of pyridones and their syinthetic applications,
see: (a) Singh. V:; Yadav. G. P.: Maulik, P. R.; Batra. S. Tetrahedron 2008. 6f. 2979-2991. (b) Nag. S.: Madapa. S.: Batra. S. Swhesis 2008. 101-109. (c) Aubert. C.: Betschmann. P.: Eichberg, M. J.: Gandon, V;; Heckrodt, T. J.: Lehmann. J.; Malacria, M.: Masjost. B.; Paredes, E.: Vollhardt, K. P. C; Whitener. G. D. Chem. Eur. J. 2007. 13. 7443-7465. (d) Benjahad. A.: Croisy. M.: Monneret. C.: Bisagni. E.: Mabire. D.: Coupa.S.: Poncelet. A.: Csoka. I.: Guillemont. T.: Meyer. C.: Andries. K.: Pauwels. R.: de Bethune. M.-P.: Himmel. D. M.: Das. K.: Arnold. E.; Nguyen, C. H.: Grierson. D. S. J. Med Chem. 2005. 48. 19481964. (e) Ghosez. L.: Jnoff, E; Bayard, P; Sainte, F; Beaudegnies, R. Terohedron 1999, 55,3387-3400.
2. For the synthesis of pyridones using ketene dithioacetals or ketene aminals. see: (a) Mathews. A: Anabha. E. R.: Sasikala. K. A.: Lathesh. K. C.: Krishnaraj. K. U.: Sreedevi. K. N.: Prasanth. M.: Devaky, K. S.: Asokan, C. V. Tetrahedron 2008, 64. 1671-1675. (b) Schirok, H.: Alonso-Alija. C.; Benet-Buchholz, J.: Goller, A. H.; Grosser. R.; Michels, M.: Paulsen. H. J. Org. Chem. 2005. 70. 9463-9469. (c) Fossa. P.: Menozzi. G.: Dorigo. P.: Floreani. M.: Mosti. L. Bioorg Med Chem. 2003. 11. 4749-4759. (d) Rastogi. R. R.: Ila. H.: Junjappa. H. J. Chem. Soc.. Chem. Conmum. 1975. 645-646. (e) Datta, A.: Ila. H.; Junjappa, H. J. Org. Chem. 1990. 55. 5589-5594.
3. For the synthesis of related pyridine derivatives, see: (a) Rivkin. A.: Adams. B. Tetrahedron Lett. 2006. 47. 2395-2398. (b) Guastavino. T. F.: Barolo. S. M.: Rossi. R. A. Ew: J. Org. Chem. 2006. 3898-3902. (c) Stevenson. L.: Pimlott. S. L.: Sutherland. A. Tetahedron Lett. 2007, 48, 7137-7139. (d) Pratap. R.; Kumar. B;; Ram. V. J. Tetrahedron 2007. 63, 10309-10319. (e) Gowrisankar. S.; Na, J. E.: Lee. M. J.; Kim, J. N. Bull. Korean Chem. Soc. 2005. 26.319-322.
4. Kim. S. H.: Kim. K. H.: Kim. H. S.: Kim. T. N. Terrahedron Letf. 2008. 19. 1948-1951.
5. For the synthesis of starting materials and their synthetic applications, (a) Im. Y. J.: Kim, J. M.; Kim. J. N. Bull. Kowan Chem. Soc. 2002, 23, 1361-1362. (b) Kim. S. C.; Lee, H. S.: Kim, J. N. Bull. Korean Chem. Soc. 2007. 28. 147-150. (c) Gowrisankar. S.: Lee. H. S.: Kiml. T. N. Bull. Korean Chem. Soc. 2006. 27.20972100 . (d) Kim. J. N.: Kimi. J. M.: Lee. K. Y. Symen 2003. 821824. (e) Im. Y. J; Lee. K. Y;; Kim, T. H;; Kim, J. N. Terahedron Lett. 2002. 43. 4675-4678. (f) Bauchat, P; Le Rouille, E:; Foucaud, A. Bull. Soc. Chim. Fr. 1991. 267-271.
6. Conversion of ta into 7a could be carried out more effectively with the aid of DBU. As an example. treatment of ta with DBU (2.0 equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature in 2 h afforded 7 a in 85° o yield.
7. Compound ta was easily oxidized to 6a with PCC (pyridinium chlorochromate) in 75° o yield (2.0 equiv of $\mathrm{PCC} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt. 2 h). Alcohol derivative 5 a was also oxidized into 6 a in $81^{\circ} \mathrm{o}$ y yeld under the same conditions. The final compound 7a was reluctant to the PCC oxidation conditions. In addition. the air oxidation of 4a to 6 a occurred slowly without $\mathrm{PCC},{ }^{3}$ For the similar results using PCC oxidation process, see: Kim, S. J.; Lee, H. S.: Kim, J. N. Terahedron Lett. 2007, 48. 1069-1072 and further references cited therein.
8. Compound ta was slowly converted into 6a presumably via air oxidation process. TLC monitoring of a solution of ta in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 15 days showed almost complete conversion of ta into $6 \mathbf{a}$, and indeed we isolated 6 a in $90^{\circ} \mathrm{o}$ yield.
9. For the synthesis and spectroscopic data of similar 3-benzoyl-2pyridones. see: (a) Bondavalli. F.: Bruno. O.: Presti. E. L.: Menozzi. G.: Mosti. L. Swhthesis 1999. 1169-1174. (b) Hassanien. A. Z. A.: Mohamed. M. H.: Gohzlan, S. A. S. J. Chem. Res. 2005. 440-445. (c) Nohara, A.: Ishiguro. T.: Ukawa. K.; Sugihara. H;; Maki. Y., Sanno. Y. J. A fed Chem. 1985, 28. 559-568.
