Facile Synthesis of Various 1-Azabicyclo[n.4.0]alkanes via Beckmann Rearrangement/Allylsilane Cyclization

Kyung-Tae Kang, ${ }^{\text {© Tae Myung Sung, Hyun Chul Jung, and Jong Gun Lee }}$
Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National Cnmersity, Busan 609-735, Korea
"E-mail: Hythangopusanackr
Recerved June 13, 2008

Key Words: Allylsilane. Beckmann rearrangement. 3-Stannỵl-2-(silỵlmethyl)propene. A-Heterocycle

The carbon-carbon bond formation by the reaction of allylsilanes with electrophiles has been widely used in organic synthesis. ${ }^{1}$ Particulary. intramolecular cyclization of allysilanes bearing an electrophilic terminus has an extensive application for the highly regio- and stereo-selective synthesis of various ring compounds.

The bismetallic reagent 3 -stannyl-2-(silylmethyl)propene 1^{2} should be a versatile conjunctive reagent since the allylstannane and the allylsilane moieties of 1 could be manipulated sequentially and in a controlled manner. ${ }^{3}$ Indeed, the allylstannane moiety of 1 selectively react with an aldehyde to yield hydroxy allylsilane $2{ }^{4}$ The reactions of $\mathbf{2}$ with either vinyl ethers or α-halo ethers give acetals which are subsequently cyclized to afford 2,6 -cis-disubstituted-4-methylenetetrahydropyrans 3 . ${ }^{5}$

Enantioselective synthesis of the tetrahydropyrans 3 was achieved by using the hydroxy allylsilanses 2 generated from the catalytic asymmetric allylation of 1 with aldehydes. ${ }^{6}$ This annulation reaction enabled an efficient synthesis of the biologically active tetrahydropyran natural products. ${ }^{7}$ Various 2.6 -disubstituted 4 -methylenepiperidines were also prepared in one-pot by the sequential reactions of aldimines with bismetallic reagent $\mathbf{1}$ followed by aldehydes. ${ }^{8}$

We described herein the synthesis of 1-azabicyclo[n.4.0]alkanes using bismetallic reagent 1. Reaction of α-tetralone oxime mesy late 6 a with 2 equivalents of trimethylaluminum resulted in the fomation of cyclic ketimine 8a. Methylation of intermediate iminocarbocation 7a. which was generated from the organoaluminum-promoted Beckmann rearrangement ${ }^{7}$ of oxime mesylate $6 \mathbf{a}$. with trimethylaluminum afforded cyclic imine 8a. Allylation of cyclic ketimine 8a with allyllithium 9 gave cyclic amino allylsilane 10a in good
yield. ${ }^{10} 2$-(Trimethylsilylmethyl)allyllithium 9 was generated by treating bismetallic reagent 1 with methyllithium.

This easy and one-pot reaction has a wide generality. Other synthetic examples of this type are given in Table 1. It permits the introduction of an allylsilane moiety into a substrate with a simultaneous ring expansion.

In the synthesis of ketimines $\mathbf{1 0 a}$ and $\mathbf{1 0 h}$, rigorous regioselectivities were observed. The phenyl group anti to departing mesylate group migrated preferentially. ${ }^{9}$ For some reasons, this process did not work for all the oxime mesylated tested. For example. reaction of 1 -indanone oxime mesylate 6 i with trimethylaluminum and followed allyllithium 9 under standard reaction condition gave only dially lation product 11 in low yield. ${ }^{11}$ Even with larger excess of trimethylaluminum (4 equiv) and after prolonged reaction time, the expected monoallylation product $\mathbf{1 0 i}$ was not produced. It is not clear why such anommalous behavior was observed for 1 -indanone oxime mesylate only.

Mannich cyclization of iminium-vinyl and allylsilanes is to provide an attractive method for the regio-controlled production of piperidines possessing either endo- or exo-
cyclic unsaturation. ${ }^{12}$ Cyclic amino allylsilanes 10 as their trifluoroacetate salts were treated at $40-45^{\circ} \mathrm{C}$ with 1.2 equiv. of formaldehyde in water:tetrahydrofuran (3:1) to give azabicyclic compounds $13 .{ }^{13}$

Table 1. Synthesis of cyclic amino allysilanes 10 and 1 -azabicyclo[n.4.0]alkanes 13
Entry

As shown be seen in Table 1. 1-azabicyclo[n.4.0]alkanes of various ring size $(n=4,5,6,7$ and 11) were obtained in good yields.

The present reaction sequence, organoaluminum-promoted Beckmann rearrangement of oxime mesylate, allylation reaction with 2 -(trimethylsilylmethyl)allyllithium, and Mannich reaction, provides a versatile and useful synthetic method for l-azabicylo[n.4.0]alkanes.

Acknowledgments. This work was supported for two years by Pusan National University Research Grant.

References and Notes

1. (a) Fleming. I.: Dunogues. J.: Smithers. R. Org. React 1989.37.57. (b) Langhopf. E.: Schinzer. D. Chem. Rer: 1995. 95. 1375. (c) Chabaud. L.: James. P: Landais. Y. Eur. J. Org Chem 2004. 3173.
2. (a) Kang, K.-T.: U. J. S.; Park. D. K.: Kim. J. G;; Kim. W. J. Bull. Korean Chem. Soc. 1995. 16, 464. (b) Benoit. D.: Bemand, L. Synlett 2006. 2148.
3. (a) Clive. D. L. J.: Paul. C. C.: Wang. Z. J. Org. Chem 1997. 62. 7028. (b) Kang. K.-T.: Hwang. S. S.: Kwak. W. Y.: Yoon. U. C. Bull. Korean Chemt Soc. 1999. 20.801.
4. (a) Majetich. G; Mishidie. H; Zhang. Y. J. Chem. Soc. Perkin 1 1995. 453. (b) Kang, K.-T.: U. J. S.: Park: D. K.: Kim. J. G; Kwon. Y. M. Symh Commum. 1997. 27. 1173. (c) Takuwea, A; Saito. H.: Nishigaichi. Y. Chem. Conmum. 1999. 1963.
5. Sung. T. M.: Kwak. W. Y.: Kang. K.-T. Bufl. Korean Chem. Soe. 1998. 19. 862.
6. (a) Yu. C.-M., Lee. J.-Y.: So, B.; Hong. J. Angew Chem. Int. Ed. 2002. 41, 161. (b) Keck. G. E.: Covel. J. A.: Schiff, T.: Yu, T. Org. Lett. 2002, +, 1189.
7. (a) Keck. G. E.: Truong. A. P. Org. Left 2005. 7. 2153. (b) Sanchez. C. C.: Keck. G. E. Org. Letr. 2005. 7. 3053.
8. Kang. K.- T.: Kim. E. H.: Kim. W. T.: Song. N. S.: Shint. J. K.: Cho. B. Y. Synlet 1988.921.
9. (a) Maruoka. K.: Mivazaki. T.: Audo. M.; Matsumara. Y.: Sakane. S.; Hattori. K.; Yamamoto, H. J. Am. Chem. Soc. 1983. 105, 2831.
(b) Schinzer. D.: Bo. Y. Angew. Chem. Im. Ed. Engl. 1991. 30. 687. (c) Schinzer. D.: Langkopt. E. Swhen 1994. 375.
10. 10a: 'HNMR $\delta 0.04(9 \mathrm{H} . \mathrm{s})$. 1.06 ($3 \mathrm{H} . \mathrm{s}$). 1.62-1.72 ($4 \mathrm{H} . \mathrm{m}$). 1.63 ($1 \mathrm{H} . \mathrm{d} . J=13.2 \mathrm{~Hz}$), 1.74 ($1 \mathrm{H} . \mathrm{d} . ~ J=13.2 \mathrm{~Hz}$), 2.08 ($1 \mathrm{H} . \mathrm{d} . ~ J=$ $13.0 \mathrm{~Hz}), 2.23(1 \mathrm{H} . \mathrm{d} .13 .0 \mathrm{~Hz}), 2.74(2 \mathrm{H}, \mathrm{t} . J=4.8 \mathrm{~Hz}) .3 .74(1 \mathrm{H}$. brs). $4.74(1 \mathrm{H}, \mathrm{s}), 4.81(1 \mathrm{H}, \mathrm{s}) .6 .67-6.98(4 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR 81.5 . 22.5 .25 .5 .29 .5 .35 .5 .42 .7 .50 .6 .549 .111 .9 .121 .0 .121 .2 . 126.4. 129.9. 134.0. 144.3. 146.2: HRMS mz $287.2080\left(\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{uNSi}\right.$ requires 287.2071).
11. 11: 'HNMR $\delta 0.00(18 \mathrm{H}, \mathrm{s}), 1.61(4 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}) .1 .71(4 \mathrm{H}$. $\mathrm{d} . J=13.2 \mathrm{~Hz}), 1.83(2 \mathrm{H}, \mathrm{t} . J=6.8 \mathrm{~Hz}) .2 .10(4 \mathrm{H} . \mathrm{d}, J=13.4 \mathrm{~Hz})$. $2.26(4 \mathrm{H} . \mathrm{d} . J=13.4 \mathrm{~Hz}) .2 .78(2 \mathrm{H} . \mathrm{t} . ~ J=9.8 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{brs})$. 4.59 ($2 \mathrm{H} . \mathrm{s}$). 4.71 ($2 \mathrm{H} . \mathrm{s}$). $6.46-7.06(4 \mathrm{H} . \mathrm{m})$: ${ }^{3} \mathrm{C} \mathrm{NMR} \delta-1.3$. 23.7. 29.4. 30.4. 46.7. 54.0. 111.4. 114.7. 116.7. 120.4. 126.7. 129.2. 143.9. 144.0. HRMS mz $385.2619\left(\mathrm{C}_{13} \mathrm{H}_{33} \mathrm{NSi}_{2}\right.$ requires 385.2623).
12. Grieco, P. A.; Fobare, W. F. Terohedron Lett 1986. 27. 5067.
13. 13a. ${ }^{1} \mathrm{H}$ NMR $\delta 0.97(3 \mathrm{H} . \mathrm{s}), 1.26-1.42(2 \mathrm{H}, \mathrm{m}), 1.52-1.72(1 \mathrm{H}$. $\mathrm{m}) .1 .80-1.99(2 \mathrm{H} . \mathrm{m}) .2 .28-2.45(2 \mathrm{H} . \mathrm{m}) .2 .48-2.74(2 \mathrm{H} . \mathrm{m})$. 2.92-3.50 ($3 \mathrm{H} . \mathrm{m}$). 4.75 ($1 \mathrm{H} . \mathrm{s}$). $4.88(1 \mathrm{H} . \mathrm{s}) .6 .88-7.28(4 \mathrm{H} . \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR $\delta 19.2$. 19.5. 30.3. 35.5. 37.7. 44.9. 46.8. 56.1. 109.6 . 121.4. 122.5. 126.6. 128.2. 137.0, 145.6. 148.8. HRMS mz $227.1681\left(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}\right.$ requires 227.1675$)$.
