DOI QR코드

DOI QR Code

Removal of Heavy Metal Ions by Electrocoagulation for Continuous Use of Fe2+/Fe3+-Mediated Electrochemical Oxidation Solutions

  • Jung, Youn-Su (Department of Chemistry, Sunchon National University) ;
  • Pyo, Myoung-Ho (Department of Chemistry, Sunchon National University)
  • Published : 2008.05.20

Abstract

Removal of heavy metal ions ($Cd^{2+}$ and $Zn^{2+}$) by electrocoagulation (ECG) was investigated in an acidic condition, which is necessary for re-using or discharging the mediated electrochemical oxidation (MEO) media. Effects of various parameters such as electrolytes, current densities, and electrode materials were examined for a metal-contaminated MEO system using $Fe^{2+}/Fe^{3+}$ pairs as a mediator. It was found that ECG with Al electrodes is greatly affected by the presence of $Fe^{2+}$. [$Cd^{2+}$] and [$Zn^{2+}$] remain constant until [$Fe^{2+}$] reaches a certain concentration level (ca. 10 mM). This preferential removal of $Fe^{2+}$ during ECG with Al electrodes is not alleviated by controlling current densities, potential programs, and solution mixing. ECG with Fe electrodes, on the other hand, resulted in relatively fast removal of $Cd^{2+}$ and $Zn^{2+}$ under coexistence of $Fe^{2+}$, indicative of the different role between $Fe^{n+}$ generated from an electrode and $Fe^{2+}$ initially present in a solution. When ECG was performed with Fe electrodes until [$Fe^{n+}$] became the same as the concentration of initially present $Fe^{2+}$, [$Cd^{2+}$] and [$Zn^{2+}$] were reduced to one-tenth of the initial concentrations, suggesting the possibility of a continuous use of the medium for a subsequent MEO process.

Keywords

References

  1. Yoon, J. H.; Yang, J. E.; Shim, Y.-B.; Won, M.-S. Bull. Korean Chem. Soc. 2007, 28, 403 https://doi.org/10.5012/bkcs.2007.28.3.403
  2. Casqueira, R. G.; Torem, M. L.; Kohler, H. M. Miner. Eng. 2006, 19, 1388 https://doi.org/10.1016/j.mineng.2006.02.001
  3. Zhitomirsky, I. Adv. Colloid Interface Sci. 2002, 97, 279 https://doi.org/10.1016/S0001-8686(01)00068-9
  4. Chiang, L. C.; Chang, J. E.; Wen, T. C. Water Res. 1995, 29, 671 https://doi.org/10.1016/0043-1354(94)00146-X
  5. Dhooge, P. M.; Stilwell, D. E.; Park, S. M. J. Electrochem. Soc. 1982, 129, 1719 https://doi.org/10.1149/1.2124257
  6. Pyo, M.; Moon, I. S. Bull. Korean Chem. Soc. 2005, 26, 899 https://doi.org/10.5012/bkcs.2005.26.6.899
  7. Mohammad, M. Y. A.; Morkovsky, P.; Gomes, J. A. G.; Kesmez, M.; Parga, J.; Cocke, D. L. J. Hazard Mater. 2004, 114, 199 https://doi.org/10.1016/j.jhazmat.2004.08.009
  8. Mollah, M. Y. A.; Schennach, R.; Parga, J. R.; Cocke, D. L. J. Hazard. Mater. 2001, 84, 29 https://doi.org/10.1016/S0304-3894(01)00176-5
  9. Koparal, A. S.; Ogutveren, U. G. J. Hazard Mater. 2002, B89, 83
  10. Hu, C. Y.; Lo, S. L.; Kuan, W. H.; Lee, Y. D. Water Res. 2005, 39, 985
  11. Parga, J.; Cocke, D. L.; Valenzuela, J. L.; Gomes, J. A.; Kesmez, M.; Irwin, G.; Moreno, H.; Weir, M. J. Hazard Mater. 2005, 124, 247 https://doi.org/10.1016/j.jhazmat.2005.05.017
  12. Gomes, J. A. G.; Daida, P.; Kesmez, M.; Weir, M.; Moreno, H.; Parga, J. R.; Irwin, G.; McWhinney, H.; Grady, T.; Peterson, E.; Cocke, D. L. J. Hazard Mater. 2007, 139, 220 https://doi.org/10.1016/j.jhazmat.2005.11.108
  13. Gao, P.; Chen, X.; Shen, F.; Chen, G. Sep. Purif. Technol. 2005, 43, 117 https://doi.org/10.1016/j.seppur.2004.10.008
  14. Golder, A. K.; Samanta, A. N.; Ray, S. Sep. Purif. Technol. 2007, 53, 33 https://doi.org/10.1016/j.seppur.2006.06.010
  15. Adhoum, N.; Monser, L.; Bellakhal, N.; Belgaied, J.-E. J. Hazard Mater. 2004, 112, 207 https://doi.org/10.1016/j.jhazmat.2004.04.018
  16. Kobya, M.; Can, O. T.; Bayramoglu, M. J. Hazard Mater. 2003, 100, 163 https://doi.org/10.1016/S0304-3894(03)00102-X
  17. Can, O. T.; Kobya, M.; Demirbas, E.; Bayramoglu, M. Chemosphere 2006, 62, 181 https://doi.org/10.1016/j.chemosphere.2005.05.022
  18. Adhoum, N.; Monser, L. Chem. Eng. Process 2004, 43, 1281 https://doi.org/10.1016/j.cep.2003.12.001
  19. Larue, O.; Vorobiev, E.; Vu, C.; Durand, B. Sep. Purif. Technol. 2003, 31, 177 https://doi.org/10.1016/S1383-5866(02)00182-X
  20. Sequeira, C. A. C.; Santos, D. M. F.; Brito, P. S. D. Appl. Surf. Sci. 2006, 252, 6093 https://doi.org/10.1016/j.apsusc.2005.11.028
  21. Bringmann, F.; Ebert, K.; Galla, U.; Schmieder, H. J. Appl. Electrochem. 1995, 25, 846 https://doi.org/10.1007/BF00772203
  22. Farmer, J. C.; Wang, F. T.; Lewis, P. R.; Summers, L. J. Trans. IChemE. 1992, 70B, 158
  23. Raju, T.; Basha, C. A. Chem. Eng. J. 2005, 114, 55 https://doi.org/10.1016/j.cej.2005.09.004
  24. Matheswaran, M.; Balaji, S.; Chung, S. J.; Moon, I. S. Bull. Korean Chem. Soc. 2007, 28, 1329 https://doi.org/10.5012/bkcs.2007.28.8.1329
  25. Lee, J.-W.; Chung, S. J.; Balaji, S.; Kokovkin, V. V.; Moon, I. S. Chemosphere 2007, 68, 1067 https://doi.org/10.1016/j.chemosphere.2007.01.073
  26. Lide, D. R. CRC Handbook of Chemistry and Physics, 76th ed.; CRC press: Boca Raton, FL, 1995

Cited by

  1. Electro-dissolution of metal scrap anodes for nickel ion removal from metal finishing effluent vol.19, pp.1, 2017, https://doi.org/10.1007/s10163-015-0393-8
  2. Optimum synthesis of an amino functionalized microcrystalline cellulose from corn stalk for removal of aqueous Cu2+ pp.1572-882X, 2018, https://doi.org/10.1007/s10570-018-2113-8
  3. Adsorption of As(III), As(V), Cd(II), Cu(II), and Pb(II) from Aqueous Solutions by Natural Muscovite vol.45, pp.6, 2008, https://doi.org/10.1080/01496391003609023