DOI QR코드

DOI QR Code

Aromatic Formation from Vinyl Radical and Acetylene. A Mechanistic Study

  • Natalia, Debby (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Indarto, Antonius (Dipartimento di Chimica Generale ed Organica Applicata, UniversitA di Torino)
  • Published : 2008.02.20

Abstract

The viability of acetylene addition in each step of aromatic formation initiated by vinyl radical and acetylene also with its competition with structure rearrangement is investigated by determining optimal geometries and barrier and reaction energies using quantum mechanical methods. In principle, the addition reaction has more difficult in term of free energy and enthalpy compared to geometry arrangement. Under combustion conditions, i.e. T = 1200 K, acetylene addition is unfavorable mechanism as the barrier energy values rise much higher than that of geometry arrangement. However, in longer chain hydrocarbon case, e.g. n-CxHx+1 where x ³ 8, C-C bond rotation is rather difficult and requires high energy to form a ring structure, elongation chain is preferable.

Keywords

References

  1. Wood, A. W.; Levin, W.; Chang, R. L.; Huang, M. T.; Ryan, D. E.; Thomas, P. E.; Lehr, R. E.; Kumar, S.; Koreeda, M.; Akagi, H.; Ittah, Y.; Dansette, P.; Yagi, H.; Jerina, D. M.; Conney, A. H. Cancer Res. 1980, 40, 642
  2. Fu, P. P.; Beland, F. A.; Yang, S. K. Carcinogenesis 1980, 1, 725 https://doi.org/10.1093/carcin/1.8.725
  3. Busby, W. F.; Stevens, E. K.; Kellenbach, E. R.; Cornelisse, J.; Lugtenburg, J. Carcinogenesis 1988, 9, 741 https://doi.org/10.1093/carcin/9.5.741
  4. Lafleur, A. L.; Longwell, J. P.; Shirnamé-Moré, L.; Monchamp, P. A.; Peters, W. A.; Plummer, E. F. Energy & Fuels 1990, 4, 307 https://doi.org/10.1021/ef00021a016
  5. Durant, J. L.; Busby, W. F.; Lafleur, A. L.; Penman, B. W.; Crespi, C. L. Mutation Res. 1996, 371, 123 https://doi.org/10.1016/S0165-1218(96)90103-2
  6. Denissenko, M. F.; Pao, A.; Tang, M. S.; Pfeifer, G. P. Science 1996, 274, 430 https://doi.org/10.1126/science.274.5286.430
  7. Bittner, J. D.; Howard, J. B. Proc. Combust. Inst. 1981, 18, 1105
  8. Cole, J. A.; Bittner, J. D.; Longwell, J. P.; Howard, J. B. Combust. Flame 1984, 56, 51 https://doi.org/10.1016/0010-2180(84)90005-1
  9. Frenklach, M.; Clary, D. W.; Yuan, T.; Gardiner Jr, W. C.; Stein, S. E. Combust. Sci. Technol. 1986, 50, 79 https://doi.org/10.1080/00102208608923927
  10. Frenklach, M. Phys. Chem. Chem. Phys. 2002, 4, 2028 https://doi.org/10.1039/b110045a
  11. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian 03, Rev. B. 05; Gaussian, Inc.: Wallingford, CT, 2004
  12. Pople, J. A.; Gill, P. M. W.; Johnson, B. G. Chem. Phys. Lett. 1992, 199, 557 https://doi.org/10.1016/0009-2614(92)85009-Y
  13. Schlegel, H. B. J. Chem. Phys. 1982, 77, 3676 https://doi.org/10.1063/1.444270
  14. Schlegel, H. B.; Binkley, J. S.; Pople, J. A. J. Chem. Phys. 1984, 80, 1976 https://doi.org/10.1063/1.446960
  15. Schlegel, H. B. J. Comput. Chem. 1982, 3, 214 https://doi.org/10.1002/jcc.540030212
  16. Becke, A. D. Phys. Rev. A 1988, 38, 3098 https://doi.org/10.1103/PhysRevA.38.3098
  17. Becke, A. D. ACS Symp. Ser. 1989, 394, 165 https://doi.org/10.1021/bk-1989-0394.ch012
  18. Pople, J. A.; Gill, P. M. W.; Johnson, B. G. Chem. Phys. Lett. 1992, 199, 557 https://doi.org/10.1016/0009-2614(92)85009-Y
  19. Becke, A. D. J. Chem. Phys. 1993, 98, 5648 https://doi.org/10.1063/1.464913
  20. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785 https://doi.org/10.1103/PhysRevB.37.785
  21. Ghigo, G.; Tonachini, G. J. Chem. Phys. 1999, 109, 7298
  22. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257 https://doi.org/10.1063/1.1677527
  23. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213 https://doi.org/10.1007/BF00533485
  24. Clark, T.; Chandrasekhar, J.; Schleyer, P. v. R. J. Comput. Chem. 1983, 4, 294 https://doi.org/10.1002/jcc.540040303
  25. Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265 https://doi.org/10.1063/1.447079
  26. Foresman, J. B.; Frisch, AE. Exploring Chemistry with Electronic Structure Methods; Gaussian, Inc.: Pittsburgh, PA, 1996; pp 166-168
  27. Kostyk, E.; Welsh, H. L. Can. J. Phys. 1980, 58, 912 https://doi.org/10.1139/p80-125
  28. Herzberg, G. H. Molecular Spectra and Molecular Structure: Electronic Spectra and Electronic Structure of Polyatomic Molecule; D. Van Nostrand: Princeton, NJ, 1967; Vol. III. Tamagawa, K.; Iijima, T.; Kimura, M. J. Mol. Struct. 1976, 30, 243 https://doi.org/10.1016/0022-2860(76)87003-2
  29. Richter, H.; Howard, J. B. Prog. Energy & Combust. Sci. 2000, 26, 565 https://doi.org/10.1016/S0360-1285(00)00009-5

Cited by

  1. Soot Growth Mechanisms from Polyynes vol.26, pp.12, 2009, https://doi.org/10.1089/ees.2007.0325
  2. Nanotechnologies in water and air pollution treatment vol.1, pp.1, 2012, https://doi.org/10.1080/21622515.2012.733966