DOI QR코드

DOI QR Code

Organic Solvents Containing Zwitterion as Electrolyte for Li Ion Cells

  • Krishnan, Jegatha Nambi (Medicinal Chemistry Research Center, Life Science Division, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Hyung-Sun (Battery Research Center, Energy and Environment Division, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Jae-Kyun (Medicinal Chemistry Research Center, Life Science Division, Korea Institute of Science and Technology (KIST)) ;
  • Cho, Byung-Won (Battery Research Center, Energy and Environment Division, Korea Institute of Science and Technology (KIST)) ;
  • Roh, Eun-Joo (Medicinal Chemistry Research Center, Life Science Division, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Sang-Gi (Medicinal Chemistry Research Center, Life Science Division, Korea Institute of Science and Technology (KIST))
  • Published : 2008.09.30

Abstract

Imidazolium based zwitterions, 1,2-dimethylimidazolium-3-n-propanesulfonate (DMIm-3S) and 1-Butylimidazolium-3-n-butanesulphonate (BIm-4S), were synthesized, and utilized them as additive for Li ion cell comprising of graphite anode and $LiCoO_2$ cathode. The use of 10 wt% of DMIm-3S in 1 M $LiPF_6$, EC-EMCDMC (1:1:1 (v/v)) resulted in the increased high rate charge-discharge performance. The low temperature performance of the Li ion cells at about −20 ${^{\circ}C}$ was also enhanced by these zwitterion additives. The DMIm- 3S additive resulted in the better capacity retention by the Li-ion cells even after 120 cycles with 100% depth of discharge (DOD) at 1 C rate in room temperature. Surface morphology of both graphite and $LiCoO_2$ electrode before and after 300 cycles was studied by scanning electron microscopy. An analogous study was performed using liquid electrolyte without any additive.

Keywords

References

  1. Jansen, A. N.; Kahaian, A. J.; Kepler, K. D.; Nelson, P. A.; Amine, K.; Dees, D. W. J. Power Sources 1999, 81-82, 902 https://doi.org/10.1016/S0378-7753(99)00268-2
  2. Saft, M.; Chagnon, G.; Faugeras, T.; Sarre, G.; Mores, P. J. Power Sources 1999, 80, 180 https://doi.org/10.1016/S0378-7753(99)00167-6
  3. Fuller, J.; Breda, A. C.; Carlin, R. T. J. Electrochem. Soc. 1997, 144, L67 https://doi.org/10.1149/1.1837555
  4. Fuller, J.; Breda, A. C.; Carlin, R. T. J. Electroanal. Chem. 1998, 459, 29 https://doi.org/10.1016/S0022-0728(98)00285-X
  5. Carlin, R. T.; Fuller, J. J. Chem. Commun. 1997, 15, 1345
  6. Noda, A.; Watanabe, M. Electrochim. Acta 2000, 45, 1265 https://doi.org/10.1016/S0013-4686(99)00330-8
  7. Nguyen, D. Q.; Oh, J. H.; Kim, C. S.; Kim, S. W.; Kim, H.; Lee, H.; Kim, H. S. Bull. Korean Chem. Soc. 2007, 28, 2299 https://doi.org/10.5012/bkcs.2007.28.12.2299
  8. Koch, V. R.; Nanjundiah, C.; Appetecchi, G. B.; Scrosati, B. J. Electrochem. Soc. 1995, 142, L116 https://doi.org/10.1149/1.2044332
  9. Nakagawa, H.; Izuchi, S.; Kuwana, K.; Nukuda, T.; Aihara, Y. J. Electrochem. Soc. 2003, 150, A695 https://doi.org/10.1149/1.1568939
  10. MacFarlane, D. R.; Huang, J.; Forsyth, M. Nature 1999, 402, 792 https://doi.org/10.1038/45514
  11. Hayashi, A.; Yoshizawa, M.; Angell, C. A.; Mizuno, F.; Minami, T.; Tatsumisago, M. Solid-State Lett. 2003, 6, E19 https://doi.org/10.1149/1.1584952
  12. Doyle, M.; Choi, S. K.; Proulx, G. J. Electrochem. Soc. 2000, 147, 34 https://doi.org/10.1149/1.1393153
  13. Sun, J.; MacFarlane, D. R.; Forsyth, M. Electrochim. Acta 2001, 46, 1673 https://doi.org/10.1016/S0013-4686(00)00769-6
  14. Sun, J.; Jordan, L. R.; Forsyth, M.; MacFarlane, D. Electrochim. Acta 2001, 46, 1703 https://doi.org/10.1016/S0013-4686(00)00774-X
  15. Noda, A.; Susan, M. A. B. H.; Kudo, K.; Mitsushima, S.; Hayamizu, K.; Watanabe, M. J. Phy. Chem. B 2003, 107, 4024 https://doi.org/10.1021/jp022347p
  16. Susan, M. A. B. H.; Noda, A.; Mitsushima, S.; Watanabe, M. Chem. Commun. 2003, 8, 938
  17. Papageogiaou, N.; Athanassov, Y.; Armand, M.; Gratzel, M. J. Electrochem. Soc. 1996, 143, 3099 https://doi.org/10.1149/1.1837171
  18. Kubo, W.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S. Chem. Commun. 2002, 4, 374
  19. Tiyapiboonchaiya, C.; Pringle, J. M.; Sun, J.; Byrne, N.; Howlett, P. C.; Macfarlane, D. R.; Forsyth, M. Nat. Mater. 2004, 3, 29 https://doi.org/10.1038/nmat1044
  20. Ohno, H.; Yoshizawa, M.; Ogihara, W. Electrochim. Acta 2003, 48, 2079 https://doi.org/10.1016/S0013-4686(03)00188-9
  21. Byrne, N.; Pringle, J. M.; Tiyapiboonchaiya, C.; MacFarlane, D. R.; Forsyth, M. Electrochim. Acta 2005, 50, 2733 https://doi.org/10.1016/j.electacta.2004.11.050
  22. Yoshizawa, M.; Hirao, M.; Ito-Akita, K.; Ohno, H. J. Mater. Chem. 2001, 11, 1057 https://doi.org/10.1039/b101079o
  23. Yoshizawa, M.; Narita, A.; Ohno, H. Aust. J. Chem. 2004, 57, 139 https://doi.org/10.1071/CH03240
  24. Wakihara, M.; Yamamoto, O. Lithium Ion Batteries Fundamentals and Performances; WILEY-VCH: Tokyo, Japan, 1998; p 163
  25. Aurbach, D.; Markovsky, B.; Levi, M. D.; Levi, E.; Schechter, A.; Moshkovich, M.; Cohen, Y. J. of Power Sources 1999, 81-82, 95 https://doi.org/10.1016/S0378-7753(99)00187-1
  26. Yao, J.; Wang, G. X.; Ahn, J.; Liu, H. K.; Dou, S. X. J. Power Sources 2003, 114, 292 https://doi.org/10.1016/S0378-7753(02)00585-2

Cited by

  1. Carboxylic acid functionalized imidazolium salts: sequential formation of ionic, zwitterionic, acid-zwitterionic and lithium salt-zwitterionic liquid crystals vol.21, pp.22, 2011, https://doi.org/10.1039/c1jm10580a
  2. Challenges in realizing a self-contained hydraulically-driven contractile fiber actuator vol.199, pp.1364-5498, 2017, https://doi.org/10.1039/C6FD00235H