DOI QR코드

DOI QR Code

Tautomerism of Cytosine on Silver, Gold, and Copper: Raman Spectroscopy and Density Functional Theory Calculation Study

  • Cho, Kwang-Hwi (Department of Bioinformatics and Life Science and CAMDRC) ;
  • Joo, Sang-Woo (Department of Chemistry, Soongsil University)
  • Published : 2008.01.20

Abstract

Tautomerism of pyrimidine base cytosine has been comparatively examined on nanoparticle and roughened plate surfaces of silver, gold, and copper by surface-enhanced Raman scattering (SERS). The SERS spectrum was found to be different depending on the metals and their substrate conditions suggesting the dissimilar population of various tautomers of cytosine on the surfaces. The ab initio calculations were performed at the levels of B3LYP, HF, and MP2 levels of theory with the LanL2DZ basis set to estimate the energetic stability of the tautomers with the metal complexes as well as the gas phase state. The amino group and N3-coordinated tautomer was predicted to be more favorable for bonding to Au, whereas the hydroxyl and N1-coordinated zwitter ionic form is most stable with Ag and Cu as a bidentate form from the DFT calculation. The binding energy with the Ag atom is calculated to be smaller than those with the Au and Cu atoms in line with the temperature-dependent SERS spectra of cytosine.

Keywords

References

  1. Witmer, M. R.; Falcomer, C. M.; Weiner, M. P.; Kay, M. S.; Begley, T. P.; Ganem, B.; Scheraga, H. A. Nucleic Acids Research 1991, 19, 1 https://doi.org/10.1093/nar/19.1.1
  2. Pergolese, B.; Bonifacio, A.; Bigotto, A. PhysChemChemPhys. 2005, 7, 3610
  3. Sinden, R. R. DNA Structure and Function; Academic Press: San Diego, 1994
  4. Thibault, G.; Tsitrin, Y.; Davidson, T.; Gribun, A.; Houry, W. A. The EMBO Journal 2006, 25, 3367 https://doi.org/10.1038/sj.emboj.7601223
  5. Person, W. B.; Spaczepaniak, K. Calculated and Experimental Vibrational Spectra and Force Fields for Isolated Pyrimidine Bases in Vibrational Spectra and Structure; During, J. R., Ed.; Dekker: New York, 1992; Vol. 20, p 239
  6. Park, Y. C.; Lee, J. S. Bull. Korean Chem. Soc. 2007, 28, 386 https://doi.org/10.5012/bkcs.2007.28.3.386
  7. Civcir, P. U. J. Mol. Struct. 2000, 532, 157 https://doi.org/10.1016/S0166-1280(00)00556-X
  8. Chandra, A. K.; Michalska, D.; Wysokinski, R.; Zeegers- Huyskens, T. J. Phys. Chem. A 2004, 108, 9593 https://doi.org/10.1021/jp040206c
  9. Kumar, A.; Mishra, P. C.; Suhai, S. J. Phys. Chem. A 2006, 110, 7719 https://doi.org/10.1021/jp060932a
  10. Santamaria, R.; Charro, E.; Zacarias, A.; Castro, M. J. Computational Chem. 1999, 20, 511 https://doi.org/10.1002/(SICI)1096-987X(19990415)20:5<511::AID-JCC4>3.0.CO;2-8
  11. Wang, Y.; Du, X.; Miao, W.; Liang, Y. J. Phys. Chem. B 2006, 110, 4914 https://doi.org/10.1021/jp055046z
  12. Ostblom, M.; Liedberg, B.; Demers, L. M.; Mirkin, C. A. J. Phys. Chem. B 2005, 109, 15150 https://doi.org/10.1021/jp051617b
  13. Petrovykh, D. Y.; Kimura-Suda, H.; Whitman, L. J.; Tarlov, M. J. J. Am. Chem. Soc. 2003, 125, 5219 https://doi.org/10.1021/ja029450c
  14. Demers, L. M.; Östblom, M.; Zhang, H.; Jang, N.-H.; Liedberg, B.; Mirkin, C. A. J. Am. Chem. Soc. 2002, 124, 11248 https://doi.org/10.1021/ja0265355
  15. Yamada, T.; Shirasaka, K.; Takano, A.; Kawai, M. Surf. Sci. 2004, 561, 233 https://doi.org/10.1016/j.susc.2004.05.095
  16. Sanchez-Cortes, S.; Garcia-Ramos, J. V. Langmuir 2002, 16, 764 https://doi.org/10.1021/la9905822
  17. Kreibig, U.; Volmer, M. Optical Properties of Metal Clusters; Springer; Berlin, 1995
  18. Mulvaney, P. Langmuir 1996, 12, 788 https://doi.org/10.1021/la9502711
  19. Vo-Dinh, T. Biomedical Photonics Handbook; CRC Press: New York, 2003
  20. Moskovits, M. Rev. Mod. Phys. 1985, 57, 783 https://doi.org/10.1103/RevModPhys.57.783
  21. Joo, S. W. Bull. Korean Chem. Soc. 2007, 28, 1405 https://doi.org/10.5012/bkcs.2007.28.8.1405
  22. Cao, Y.; Jin, R.; Mirkin, C. A. Science 2002, 297, 1536 https://doi.org/10.1126/science.297.5586.1536
  23. Sellers, H.; Ulman, A.; Shnidman, Y.; Eilers, J. E. J. Am. Chem. Soc. 1993, 115, 9389 https://doi.org/10.1021/ja00074a004
  24. Ulman, A. Chem. Rev. 1996, 96, 1533 https://doi.org/10.1021/cr9502357
  25. Bae, S. J.; Lee, C.-R.; Choi, I. S.; Hwang, C. S.; Gong, M.-S.; Kim, K.; Joo, S. W. J. Phys. Chem. B 2002, 106, 7076 https://doi.org/10.1021/jp020237c
  26. Joo, S. W.; Chung, T. D.; Jang, W.; Gong, M.-S.; Geum, N.; Kim, K. Langmuir 2002, 18, 8813 https://doi.org/10.1021/la020003k
  27. Joo, S.-W.; Kim, Y. S. Col. Surf. A 2004, 234, 117 https://doi.org/10.1016/j.colsurfa.2003.12.011
  28. Cho, K.-H.; Choo, J.; Joo, S.-W. Spectrochim. Acta A 2005, 61, 1141 https://doi.org/10.1016/j.saa.2004.06.032
  29. Cho, K.-H.; Choo, J.; Joo, S.-W. J. Mol. Struct. 2005, 738, 9 https://doi.org/10.1016/j.molstruc.2004.11.001
  30. Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391 https://doi.org/10.1021/j100214a025
  31. Creighton, J. A.; Alvarez, M. S.; Weitz, D. A.; Garoff, S.; Kim, M. W. J. Phys. Chem. 1983, 87, 4793 https://doi.org/10.1021/j150642a007
  32. Gaussian 03, Revision A.1; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;Zakrzewski, V. G.; Montgomery, J. A. Jr., Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head- Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian, Inc.; Pittsburgh, PA, 2003
  33. Kim, S.; Ihm, K.; Kang, T.-H.; Hwang, S.; Joo, S.-W. Surf. Interf. Anal. 2005, 37, 294 https://doi.org/10.1002/sia.2019
  34. Les, A.; Adamowicz, L.; Nowak, M. J.; Lapinski, L. Spectrochim. Acta A 1992, 48, 1385 https://doi.org/10.1016/0584-8539(92)80144-L

Cited by

  1. Microarrays of gold nanoparticle clusters fabricated by Stop&Go convective self-assembly for SERS-based sensor chips vol.4, pp.24, 2012, https://doi.org/10.1039/C2NR32781C
  2. Adsorption of Cytosine and AZA Derivatives of Cytidine on Au Single Crystal Surfaces vol.117, pp.36, 2013, https://doi.org/10.1021/jp404821t
  3. Chemotaxonomic Raman Spectroscopy Investigation of Ascomycetes and Zygomycetes vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1240
  4. Revealing interactions between polyaza pyridinophane compounds and DNA/RNA polynucleotides by SERS spectroscopy vol.45, pp.10, 2014, https://doi.org/10.1002/jrs.4564
  5. Development of DNA Metalloenzymes Using a Rational Design Approach and Application in the Asymmetric Diels–Alder Reaction vol.5, pp.8, 2015, https://doi.org/10.1021/acscatal.5b01046
  6. Interaction of Cytidine 5′-Monophosphate with Au(111): An In Situ Infrared Spectroscopic Study vol.10, pp.9-10, 2009, https://doi.org/10.1002/cphc.200900018
  7. pH-Dependent Surface-enhanced Raman Scattering Analysis of Maleimide and Succinimide on Ag Nanocolloidal Surfaces vol.29, pp.9, 2008, https://doi.org/10.5012/bkcs.2008.29.9.1761
  8. Laser-Induced Photoreaction of Bis(4-nitrophenyl) Disulfide on Copper Revealed by Surface-Enhanced Raman Scattering vol.30, pp.1, 2008, https://doi.org/10.5012/bkcs.2009.30.1.242
  9. Photophysical Properties of Chlorotriethylphosphinegold(I) vol.31, pp.8, 2010, https://doi.org/10.5012/bkcs.2010.31.8.2151
  10. Approximate solution of the mode–mode coupling integral: Application to cytosine and its deuterated derivative vol.77, pp.2, 2010, https://doi.org/10.1016/j.saa.2010.06.015
  11. Label‐Free Detection of Nanomolar Unmodified Single‐ and Double‐Stranded DNA by Using Surface‐Enhanced Raman Spectroscopy on Ag and Au Colloids vol.18, pp.17, 2008, https://doi.org/10.1002/chem.201103520
  12. Theoretical Spectroscopic Study on the Au, Ag, Au/Ag, and Ag/Au Nanosurfaces and Their Cytosine/Nanosurface Complexes: UV, IR, and Charge-Transfer SERS Spectra vol.123, pp.26, 2008, https://doi.org/10.1021/acs.jpcc.9b00683
  13. Theoretical simulation of surface‐enhanced resonance Raman spectroscopy of cytosine and its tautomers vol.51, pp.1, 2020, https://doi.org/10.1002/jrs.5748
  14. Unexpected cytosine-AuCl4 interaction under electrospray ionization mass spectrometry conditions-Formation of cytosine-Au(I) complexes vol.26, pp.3, 2020, https://doi.org/10.1177/1469066719893233