DOI QR코드

DOI QR Code

Conformational and Structural Changes of Choline Oxidase from Alcaligenes Species by Changing pH Values

  • Hekmat, A. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Saboury, A. A. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Divsalar, A. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Khanmohammadi, M. (Department of Chemistry, Faculty of Science, University of Qazvin)
  • Published : 2008.08.20

Abstract

Results of intrinsic and extrinsic fluorescence studies on choline oxidase revealed that the enzyme at high alkaline pH values has more accessible hydrophobic patches relative to acidic pH. Fluorescence quenching studies with acrylamide confirm these changes. The quenching constants were also determined at different pH(s) by using the Stern-Volmer equation. CD studies showed that at higher pH a transition from $\alpha$-helix to $\beta$- structure was appeared while at lower pH the content of $\alpha$-helix structure was increased. Furthermore, analysis of the spectral data using chemometric method gave evidence for existence of intermediate components at very high pH(s). Results of thermal denaturation evaluated that the enzyme has the most instability at higher pH(s). Altogether low and high pH values caused significant alteration on secondary and tertiary structures of choline oxidase via inducing of an intermediate.

Keywords

References

  1. Bhattacharyya, A. M.; Horowitz, P. J. Biol. Chem. 2000, 275, 14860 https://doi.org/10.1074/jbc.275.20.14860
  2. Kettlun, A. M.; Espinosa, V.; Zanocco, A.; Valenzuela, M. A. Braz. J. Med. Biol. Res. 2000, 33, 725 https://doi.org/10.1590/S0100-879X2000000700001
  3. Qa'Dan, M.; Spyres, L. M.; Ballard, J. D. Immun. 2000, 68, 2470
  4. Hiratsuka, T. J. Biol. Chem. 1999, 274, 29156 https://doi.org/10.1074/jbc.274.41.29156
  5. Ho, C.; Slater, S. J.; Stagliano, B. A.; Stubbs, C. D. Biochem. J. 1999, 344, 451 https://doi.org/10.1042/0264-6021:3440451
  6. Dixon, M.; Webb, E. C. Enzymes, 3rd ed.; Academic Press: New York, 1979; Chapter 4
  7. Bernheim, F.; Bernheim, M. L. C. Am. J. Phsiol. 1933, 104, 438
  8. Wells, I. C. J. Biol. Chem. 1954, 207, 575
  9. Williams, I. N.; Litwack, G. J. Biol. Chem. 1952, 192, 73
  10. Mann, P. J. G.; Woodward, H. E.; Quastel, J. H. Biochem. J. 1938, 32, 1024 https://doi.org/10.1042/bj0321024
  11. Ikuta, S.; Matuura, K.; Imamura, S.; Mistake, H.; Horiuti, Y. J. Biochem. 1977, 82, 157 https://doi.org/10.1093/oxfordjournals.jbchem.a131664
  12. Yamada, H.; Mori, N.; Tani, Y. Agric. Biol. Chem. 1979, 43, 2173 https://doi.org/10.1271/bbb1961.43.2173
  13. Ohta-Fukuyama, M.; Miyake, Y.; Emi, S.; Yamano, T. J. Biochem. 1980, 88, 197
  14. Ohta, M.; Miura, R.; Yamano, T.; Miyake, Y. J Biochem. (Tokyo) 1983, 94, 879 https://doi.org/10.1093/oxfordjournals.jbchem.a134431
  15. Gadda, G. Biochim. Biophys. Acta 2003, 1646, 112 https://doi.org/10.1016/S1570-9639(03)00003-7
  16. Ohta-Fukuyama, M.; Miyake, Y.; Shiga, K. J. Biochem. 1980, 88, 205
  17. Gadda, G. Biochim. Biophys. Acta 2003, 1650, 4 https://doi.org/10.1016/S1570-9639(03)00188-2
  18. Cantor, C. H.; Schimmel, P. R. Biophysical Chemistry; W.H. Freeman and Company: New York, 1980
  19. Graham, J. E.; Wilkinson, B. J. J. Bacteriol. 1992, 174, 2711 https://doi.org/10.1128/jb.174.8.2711-2716.1992
  20. Bae, J. H.; Anderson, S. H.; Miller, K. J. Appl. Environ. Microbiol. 1993, 59, 2734
  21. Kaenjak, A.; Graham, J. E.; Wilkinson, B. J. J. Bacteriol. 1993, 175, 2400 https://doi.org/10.1128/jb.175.8.2400-2406.1993
  22. Culham, D. E.; Emmerson, K. S.; Lasby, B.; Mamelak, D.; Steer, B. A.; Gyles, C. L.; Villarejo, M.; Wood, J. M. Can. J. Microbiol. 1994, 40, 397 https://doi.org/10.1139/m94-065
  23. Deshnium, P.; Gombos, Z.; Nishiyama, Y.; Murata, N. J. Bacteriol. 1997, 179, 339 https://doi.org/10.1128/jb.179.2.339-344.1997
  24. Deshnium, P.; Los, D. A.; Hayashi, H.; Mustardy, L.; Murata, N. Plant. Mol. Biol. 1995, 29, 897 https://doi.org/10.1007/BF00014964
  25. Alia; Hayashi, H.; Sakamoto, A.; Murata, N. Plant J. 1998, 16, 155 https://doi.org/10.1046/j.1365-313x.1998.00284.x
  26. Kempf, B.; Bremer, E. Arch. Microbiol. 1998, 170, 319 https://doi.org/10.1007/s002030050649
  27. Peddie, B. A.; Wong-She, J.; Randall, K.; Lever, M.; Chambers, S. T. FEMS. Microbiol. Lett. 1998, 160, 25 https://doi.org/10.1111/j.1574-6968.1998.tb12885.x
  28. Holmstrom, K. O.; Somersalo, S.; Mandal, A.; Palva, T. E.; Welin, B. J. Exp. Bot. 2000, 51, 177 https://doi.org/10.1093/jexbot/51.343.177
  29. Sakamoto, A.; Alia; Murata, N. Plant Mol. Biol. 1998, 38, 1011 https://doi.org/10.1023/A:1006095015717
  30. Sakamoto, A.; Valverde, R.; Alia; Chen, T. H. H.; Murata, N. Plant J. 2000, 22, 449 https://doi.org/10.1046/j.1365-313X.2000.00749.x
  31. Tavakoli, H.; Ghourchian, H.; Moosavi-Movahedi, A. A.; Chilaka, F. C. Int. J. Biol. Macromol. 2005, 36, 318 https://doi.org/10.1016/j.ijbiomac.2005.07.001
  32. Guerrieri, A.; Monaci, L.; Quinto, M.; Palmisano, F. Analyst 2002, 127, 5 https://doi.org/10.1039/b109123a
  33. Nunes, G. S.; Barcelo, D. Analusis. Magazine 1998, 26, 156 https://doi.org/10.1051/analusis:199826060156
  34. Ajloo, D.; Behnam, H.; Saboury, A. A.; Mohamadi-Zonoz, F.; Ranjbar, B.; Moosavi-Movahedi, A. A.; Hasani, Z.; Alizadeh, K.; Gharanfoli, M.; Amani, M. Bull. Korean Chem. Soc. 2007, 28, 730 https://doi.org/10.5012/bkcs.2007.28.5.730
  35. Adams, M. J. Chemometrics in Analytical Spectroscopy, 2nd ed.; Royal Society of Chemistry: UK, 2004
  36. Diaz-Cruz, M. S.; Mendieta, J.; Tauler, R.; Esteban, M. Anal. Chem. 1999, 71, 4629 https://doi.org/10.1021/ac990467w
  37. Pirzadeh, P.; Moosavi-Movahedi, A. A.; Hemmateenejad, B.; Ahmad, F.; Shamsipur, M.; Saboury, A. A. Colloids Surf. B: Biointerfaces 2006, 52, 31 https://doi.org/10.1016/j.colsurfb.2006.05.019
  38. Keesey, J. Boehringer Mannheim Biochemicals, 1st ed.; IN Biochemica Information: 1987; p 58
  39. Eftink, M. R.; Ghiron, C. A. Anal. Biochem. 1981, 114, 199 https://doi.org/10.1016/0003-2697(81)90474-7
  40. Lehrer, S. S. Biochemistry 1971, 10, 3254 https://doi.org/10.1021/bi00793a015
  41. Malinowski, E. R. Factor Analysis in Chemistry; Wiley & Sons: New York, 1991
  42. Ali, V.; Prakash, K.; Kulkarni, S.; Ahmad, A.; Madhusudan, K. P.; Bhakuni, V. Biochemistry 1999, 38, 13635 https://doi.org/10.1021/bi9907835
  43. Cardamone, M.; Puri, N. K. Biochem. J. 1992, 282, 589 https://doi.org/10.1042/bj2820589
  44. Kotik, M.; Zuber, H. Eur. J. Biochem. 1993, 211, 267 https://doi.org/10.1111/j.1432-1033.1993.tb19895.x
  45. Eftink, M. R.; Selvidge, L. A. Biochemistry 1982, 21, 117 https://doi.org/10.1021/bi00530a021
  46. France, R. M.; Grossman, S. H. Biochem. Biophys. Res. Commun. 2000, 296, 709
  47. Sreerama, N.; Woody, R. W. Protein Sci. 2004, 13, 100 https://doi.org/10.1110/ps.03258404
  48. Saboury, A. A.; Karbassi, F.; Haghbeen, K.; Ranjbar, B.; Moosavi- Movahedi, A. A.; Farzami, B. Int. J. Biol. Macromol. 2004, 34, 257 https://doi.org/10.1016/j.ijbiomac.2004.06.003
  49. Pace, C. N.; Shiley, B. A.; Thomson, J. A. Protein Structure: A Practical Approach; Creighton, T. E., Ed.; IRL Press: Oxford, 1990; p 311
  50. Kelly, S. M.; Price, N. C. Curr. Prot. Pept. Sci. 2000, 1, 349 https://doi.org/10.2174/1389203003381315
  51. Bokvist, M.; Lindstrom, F.; Watts, A.; Grobner, G. J. Mol. Biol. 2004, 335, 1039 https://doi.org/10.1016/j.jmb.2003.11.046
  52. Divsalar, A.; Saboury, A. A.; Mansoori-Torshizi, H.; Hemmatinejad, B. Bull. Korean Chem. Soc. 2006, 27, 1801 https://doi.org/10.5012/bkcs.2006.27.11.1801

Cited by

  1. Multiple spectroscopic studies of the interaction between a quaternary ammonium-based cationic Gemini surfactant (as a carrier) and human erythropoietin pp.1538-0254, 2017, https://doi.org/10.1080/07391102.2017.1391123
  2. Effect of very Low Frequency Electromagnetic Radiation on Acetylcholine Esterase Activity vol.1004-1005, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.1004-1005.827
  3. Destructive effect of anticancer oxali-palladium on heme degradation through the generation of endogenous hydrogen peroxide vol.34, pp.11, 2008, https://doi.org/10.1080/07391102.2015.1121408
  4. Mechanistic insights into primary biotransformation of diethyl phthalate in earthworm and significant SOD inhibitory effect of esterolytic products vol.288, pp.p1, 2008, https://doi.org/10.1016/j.chemosphere.2021.132491