DOI QR코드

DOI QR Code

Self-Assembled Monolayers of Dioctyl Diselenides on Au(111)

  • Published : 2008.06.20

Abstract

The surface structure, electrochemical behavior, and wetting property of self-assembled monolayers (SAMs) formed by dioctyl diselenide (DODSe) on Au(111) were investigated by scanning tunneling microscopy (STM), cyclic voltammetry (CV), and contact angle measurements. In contrast to the formation of well-ordered SAMs by octanethiol on Au(111), the SAMs formed by DODSe have a disordered phase and many unusual vacancy islands (VIs). In addition, the formation of DODSe SAMs is largely influenced by the solution concentration used. DODSe SAMs formed in 5 $\mu$ M and 50 $\mu$ M solutions have two mixed domains consisting of missing-row ordered phases and disordered phases, while DODSe SAMs formed in 1 mM and 5 mM solutions have only disordered phases with an abnormally high VI fraction of 22-24%. We also found that the wetting property and electrochemical behavior of DODSe SAMs on Au(111) are markedly influenced by the formation of ordered SAMs and the density of VIs.

Keywords

References

  1. Nuzzo, R. G.; Dubois, L. H.; Allara, D. L. J. Am. Chem. Soc. 1990, 112, 558 https://doi.org/10.1021/ja00158a012
  2. Ulman, A. Chem. Rev. 1996, 96, 1533 https://doi.org/10.1021/cr9502357
  3. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103 https://doi.org/10.1021/cr0300789
  4. Poirier, G. E.; Pylant, G. E. Science 1996, 272, 1145 https://doi.org/10.1126/science.272.5265.1145
  5. Noh, J.; Kato, H. S.; Kawai, M.; Hara, M. J. Phys. Chem. B 2006, 110, 2793 https://doi.org/10.1021/jp055538b
  6. Noh, J.; Jeong, Y.; Ito, E.; Hara, M. J. Phys. Chem. C 2007, 111, 2691 https://doi.org/10.1021/jp067093c
  7. Noh, J. Bull. Korean Chem. Soc. 2006, 27, 944 https://doi.org/10.5012/bkcs.2006.27.6.944
  8. Jeong,Y.; Han, J. W.; Kim, N.; Lee, Y.; Hara, M.; Noh, J. Bull. Korean Chem. Soc. 2007, 28, 2445 https://doi.org/10.5012/bkcs.2007.28.12.2445
  9. Choi, Y.; Jeong, Y.; Chung, H.; Ito, E.; Hara, M.; Noh, J. Langmuir 2008, 24, 91 https://doi.org/10.1021/la701302g
  10. Noh, J.; Hara, M. Langmuir 2002, 18, 1953 https://doi.org/10.1021/la010803f
  11. Samant, M. G.; Brown, C. A.; Gordon, J. G. Langmuir 1992, 8, 1615 https://doi.org/10.1021/la00042a020
  12. Nakano, K.; Sato, T.; Tazaki, M.; Tagaki, M. Langmuir 2000, 16, 2225 https://doi.org/10.1021/la990688x
  13. Dishner, M. H.; Hemminger, J. C.; Feher, F. J. Langmuir 1997, 13, 4788 https://doi.org/10.1021/la970397t
  14. Huang, F. K.; Horton, R. C. Jr.; Myles, D. C.; Garrell, R. L. Langmuir 1998, 14, 4802 https://doi.org/10.1021/la980263v
  15. Han, S. W.; Kim, K. J. Colloid Interface Sci. 2001, 240, 492 https://doi.org/10.1006/jcis.2001.7702
  16. Han, S. W.; Lee, S. J.; Kim, K. Langmuir 2001, 17, 6981 https://doi.org/10.1021/la010464q
  17. Gladysz, J. A.; Hornby, J. L.; Garbe, J. E. J. Org. Chem. 1978, 43, 1204 https://doi.org/10.1021/jo00400a040
  18. Monnell, J. D.; Stapleton, J. J.; Jackiw, J. J.; Dunbar, T.; Reinerth, T.; Dirk, S. M.; Tour, J. M.; Allara, D. L.; Weiss, P. S. J. Phys. Chem. B 2004, 108, 9834 https://doi.org/10.1021/jp037728x
  19. Shaporenko, A.; Ulman, A.; Terfort, A.; Zharnikov, M. J. Phys. Chem. B 2005, 109, 3898 https://doi.org/10.1021/jp045052f
  20. Shaporenko, A.; Cyganik, P.; Buck, M.; Ulman, A.; Zharnikov, M. Langmuir 2005, 21, 8204 https://doi.org/10.1021/la050535b
  21. Noh, J.; Hara, M. Langmuir 2001, 17, 7280 https://doi.org/10.1021/la0100441
  22. Lukkari, J.; Meretoja, M.; Kartio, L.; Laajalehto, K.; Rajamäki, M.; Linderstöm, M.; Kankare, J. Langmuir 1999, 15, 3529 https://doi.org/10.1021/la9811719
  23. Peterlinz, K.; Georgiadis, R. Langmuir 1996, 12, 4731 https://doi.org/10.1021/la9508452

Cited by

  1. Dynamic Double Lattice of 1-Adamantaneselenolate Self-Assembled Monolayers on Au{111} vol.133, pp.48, 2011, https://doi.org/10.1021/ja2063988
  2. Phase Transition of Octaneselenolate Self-assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2623
  3. Spectroscopic ellipsometry of self assembled monolayers: interface effects. The case of phenyl selenide SAMs on gold vol.15, pp.27, 2013, https://doi.org/10.1039/c3cp51304a
  4. Surface Structure, Adsorption, and Thermal Desorption Behaviors of Methaneselenolate Monolayers on Au(111) from Dimethyl Diselenides vol.118, pp.16, 2014, https://doi.org/10.1021/jp409531w
  5. Exchange Reactions between Alkanethiolates and Alkaneselenols on Au{111} vol.136, pp.22, 2014, https://doi.org/10.1021/ja503432f
  6. Layer-by-Layer Approach to Bio-Inspired, Large-Area Formation of Silica Thin Films vol.30, pp.9, 2008, https://doi.org/10.5012/bkcs.2009.30.9.2165
  7. Effects of Solvent on the Structure of Octanethiol Self-Assembled Monolayers on Au(111) at a High Solution Temperature vol.31, pp.8, 2008, https://doi.org/10.5012/bkcs.2010.31.8.2137
  8. Formation and Surface Structures of Highly Ordered Self-Assembled Monolayers of Alkyl Selenocyanates on Au(111) via Ambient-Pressure Vapor Deposition vol.124, pp.49, 2008, https://doi.org/10.1021/acs.jpcc.0c07401
  9. Formation and superlattice of long-range and highly ordered alicyclic selenolate monolayers on Au(1 1 1) studied by scanning tunneling microscopy vol.572, pp.None, 2008, https://doi.org/10.1016/j.apsusc.2021.151454