DOI QR코드

DOI QR Code

Daily Stock Price Prediction Using Fuzzy Model

퍼지 모델을 이용한 일별 주가 예측

  • 황희수 (한라대학교 전기전자과)
  • Published : 2008.12.31

Abstract

In this paper an approach to building fuzzy model to predict daily open, close, high, and low stock prices is presented. One of prior problems in building a stock prediction model is to select most effective indicators for the stock prediction. The problem is overcome by the selection of information used in the analysis of stick-chart as the input variables of our fuzzy model. The fuzzy rules have the premise and the consequent, in which they are composed of trapezoidal membership functions, and nonlinear equations, respectively. DE(Differential Evolution) searches optimal fuzzy rules through an evolutionary process. To evaluate the effectiveness of the proposed approach numerical example is considered. The fuzzy models to predict open, high, low, and close prices of KOSPI(KOrea composite Stock Price Index) on a daily basis are built, and their performances are demonstrated and compared with those of neural network.

본 논문에서는 주가의 일별 시가, 종가, 최고가, 최저가를 예측하기 위한 퍼지모델을 제안한다. 주가는 시장의 여러 경제 변수에 의존하므로 주가예측 모델의 입력변수를 선택하는 것은 쉽지 않은 일이다. 이와 관련하여 많은 연구가 있지만 정답이 있는 것은 아니다. 본 논문에서는 이를 해결하기 위해 주가 움직임 자체에 주목하는 스틱차트의 기술적 분석에 이용되는 정보를 퍼지규칙의 입력변수로 선택한다. 퍼지규칙은 사다리꼴 멤버쉽함수로 이루어진 전건부와 비선형 수식의 후건부로 구성된다. 최적의 퍼지규칙으로 구성된 퍼지모델을 찾아내기 위해 차분진화가 사용된다. 본 논문에 제안된 방법은 수치 예를 통해 다른 방법과의 비교로 타당성이 검토되며 KOSPI(KOrea composite Stock Price Index) 일별 데이터를 사용, 주가예측 퍼지모델을 구축하고 신경회로망 모델과 비교, 검토된다.

Keywords

References

  1. H. S. Hwang, “Automatic design of fuzzy rule base for modeling and control using evolutionary programming,” IEEE Proc-Control Theory Appl., 146, (1), pp.9-16, 1996 https://doi.org/10.1049/ip-cta:19990087
  2. H. S. Hwang and K. B. Woo, “Linguistic fuzzy model identification,” IEEE Proc. Control Theory Appl., 142, (6), pp.537-544, 1995 https://doi.org/10.1049/ip-cta:19952254
  3. S. J. Kang, C. H. Woo, H. S. Hwang and K. B. Woo, “Evolutionary design of fuzzy rule base for nonlinear system modeling and control,” IEEE Trans. Fuzzy Systems, 8, (1), pp.37-44, 2000 https://doi.org/10.1109/91.824766
  4. B. M. Louis, “Trend forecasting with technical analysis,” Marketplace BOOKS, 2000
  5. K. H. Lee and G. S. Jo, “Expert system for predicting stock market timing using a candlestick chart,” Expert System With Applications, 16, pp.357-364, 1999 https://doi.org/10.1016/S0957-4174(99)00011-1
  6. L. C. H. Leon, A. Liu and W. S. Chen, “Pattern discovery of fuzzy time series for financial prediction,” IEEE Trans. Knowledge and Data Engineering, 18, (5), pp.613-625, 2006 https://doi.org/10.1109/TKDE.2006.80
  7. P. C. Chang and C. H. Liua, “A TSK type fuzzy based system for stock price prediction,” Expert Systems with Applications, 34, (1), pp.135-144, 2008 https://doi.org/10.1016/j.eswa.2006.08.020
  8. Coupelon, “Neural network modeling for stock movement prediction - A state of the art,” 2007(http://olivier.coupelon.free.fr/Neural_network_modeling_for_stock_movement_prediction.pdf)
  9. K. Nygren, “Stock Prediction: A neural network approach,” Master Thesis, Royal Institute of Technology, KTH, March, 2004
  10. Y. Tang, F. Xu, X. Wan and Y. Q. Zhang, “Web-based fuzzy neural networks for stock prediction,” Computational intelligence and applications, pp.169-174, 2002
  11. G. Armano, M. Marchesi and A. Murru, “A hybrid geneticneural architecture for stock indexes forecasting,” Information Sciences, 170, 2005 https://doi.org/10.1016/j.ins.2003.03.023
  12. Fan and M. Palaniswami, “Stock selection using support vector machines,” Proc. of Int. Joint Conf. on Neural Networks, 2001 https://doi.org/10.1109/IJCNN.2001.938434
  13. S. M. Kendall and K. Ord, “Time Series,” Oxford, 1997
  14. J. L. Wanga and S. H. Chanb, “Stock market trading rule discovery using two-layer bias decision tree,” Expert Systems with Applications 30, (4), pp.605-611, May, 2006 https://doi.org/10.1016/j.eswa.2005.07.006
  15. M. Noor and R. H. Khokhar, “Fuzzy Decision Tree for Data Mining of Time Series Stock Market Databases,” Critical Assessment of Mocroarray Data Analysis 2004 Conference, November, 2004
  16. Giudici P. Applied Data Mining. Statistical Methods for Business and Industry. Wiley, 2003.
  17. R. Storn, “Differential evolution, a simple and efficient heuristic strategy for global optimization over continuous spaces,” Journal of Global Optimization, 11, (4), pp.341-359, 1997 https://doi.org/10.1023/A:1008202821328
  18. M. Sugeno and T. Yasukawa, “A fuzzy logic based approach to qualitative modeling,” IEEE Trans. Fuzzy Syst., 1, (1), pp.7-31, 1993 https://doi.org/10.1109/TFUZZ.1993.390281
  19. T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. Syst. Man. Cybern., 15, pp.116-132, 1985
  20. M. H. Zarandi, E. Neshat, I. B. Turksen and B. Rezaee, “A type-2 fuzzy model for stock market analysis,” Fuzzy System Conf., FUZZ-IEEE 2007, pp.1-6, July, 2007 https://doi.org/10.1109/FUZZY.2007.4295378