Abstract
The crucial part of graphical model is to compute the posterior distribution of parameters plus with the hidden variables given the observed data. In this paper, implementation of variational Bayes method for Gaussian mixture model and derivation of factorial variational approximation have been proposed. This result can be used for data analysis tasks like information retrieval or data visualization.
그래프 모델에서 가장 중요한 부분은 관찰 데이터가 주어진 상황에서 은닉 변수와 더불어 파라미터의 사후확률 분포의 계산이다. 이 논문에서는 가우시안 혼합 모델에 대한 변분 베이지안 방법의 구현과 변분 근사화 분포의 분해 유도를 제안한다. 이 방법은 정보 검색이나 데이터 시각화와 같은 데이터 분석 등에 적용이 가능하다.