DOI QR코드

DOI QR Code

Mathematical Review on the Local Linearizing Method of Drift Coefficient

추세계수 국소선형근사법의 특성과 해석

  • Yoon, Min (Dept. of Applied Statistics, Konkuk University) ;
  • Choi, Young-Soo (Dept. of Mathematics, Hankuk University of Foreign Studies) ;
  • Lee, Yoon-Dong (Dept. of Applied Statistics, Konkuk University)
  • 윤민 (건국대학교 응용통계학과) ;
  • 최영수 (한국외국어대학교 수학과) ;
  • 이윤동 (건국대학교 응용통계학과)
  • Published : 2008.10.31

Abstract

Modeling financial phenomena with diffusion processes is a commonly used methodology in the area of modern finance. Recently, various types of diffusion models have been suggested to explain the specific financial processes, and their related inference methodology have been also developed. In particular, likelihood methods for the efficient and accurate inference have been explored in various ways. In this paper, we review the mathematical properties of an approximated likelihood method, which is obtained by linearizing the drift coefficient of a diffusion process.

확산모형은 금융현상을 모형화하기 위한 방법으로 자주 사용된다. 특히 최근에 제안된 다양한 확산모형들은 정교한 추론방법을 필요로 하게 되고, 이러한 필요성에 따라 정밀도가 높은 여러 가지 추론 방법에 대한 연구가 진행되고 있다. 본 논문에서는 확률편미분방정식에 의하여 표현되는 확산과정의 추론을 위하여 사용되는 여러 가지 방법 중 우도추론법에 대하여 살펴보게 된다. 다양한 우도추론법 중에서도, 근사적 우도추론법의 일종인 추세계수 국소선형근사법을 중심으로 그 수리적 성질을 검토한다.

Keywords

References

  1. 빈기범 (2005). 확산과정의 추정 기법에 관한 문헌 연구, <계량경제학보>, 16, 63-121
  2. Ahn, D. and Gao, B. (1999). A parametric nonlinear model of term structure dynamics, The Review of Financial Studies, 12, 721-762 https://doi.org/10.1093/rfs/12.4.721
  3. Ait-Sahalia, Y. (1999). Transition densities for interest rate and other nonlinear diffusions, Journal of Finance, 54, 1361-1395 https://doi.org/10.1111/0022-1082.00149
  4. Ait-Sahalia, Y. (2002). Maximum-likelihood estimation of discretely-sampled diffusions: A closed-form approximation approach, Econometrica, 70, 223-262 https://doi.org/10.1111/1468-0262.00274
  5. Ait-Sahalia, Y. (2006). Likelihood inference for diffusions: A survey, Frontiers in Statistics: in Honor of Peter J. Bickel's 65th Birthday, Imperial College Press.
  6. Ait-Sahalia, Y. and Yu, J. (2006). Saddlepoint approximations for continuous-time markov processes, Journal of Econometrics, 134, 507-551 https://doi.org/10.1016/j.jeconom.2005.07.004
  7. Bachelier, L. (1900). Theorie de la speculation, Annales Scientifiques de L' E.N.S., 17, 21-86.
  8. Bail, T. G. and Wu, L. (2006). A comprehensive analysis of the short term interest-rate dynamics, Journal of Banking & Finance, 30, 1269-1290 https://doi.org/10.1016/j.jbankfin.2005.05.003
  9. Brandt, M. W. and Santa-Clara, P. (2001). Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets, NBER Technical Working Paper 274
  10. Brennan, M. and Schwartz, E. S. (1980). Analyzing convertible bonds, Journal of Financial & Quantitative Analysis, 15, 907-929 https://doi.org/10.2307/2330567
  11. Chan, K. C., Karolyi, G. A., Longstaff, F. A. and Sanders, A. B. (1992). An empirical comparison of alternative models of the short-term interest rate, Journal of Finance, 47, 1209-1227 https://doi.org/10.2307/2328983
  12. Conley, T. G., Hansen, L. P., Luttmer, E. G. T. and Scheinkman, J. A. (1997). Short-term interest rates as subordinated diffusions, The Review of Financial Studies, 10, 525-577 https://doi.org/10.1093/rfs/10.3.525
  13. Cox, J. C. (1975). Notes on option pricing I: Constant elasticity of variance diffusions, Working paper, Stanford University (reprinted in Journal of Portfolio Management, 1996, 22, 15-17)
  14. Cox, J. C., Ingersoll, J. E. and Ross, S. A. (1980). An analysis of variable interest rate loan contracts, Journal of Finance, 35, 389-403 https://doi.org/10.2307/2327398
  15. Cox, J. C., Ingersoll, Jr. and Ross, S. A. (1985). A theory of the term structure of interest rates, Econometrica, 53, 385-407 https://doi.org/10.2307/1911242
  16. Dacunha-Castelle, D. and Florens-Zmirou, D. (1986). Estimation of the coefficients of a diffusion from discrete observations, Stochastics, 19, 263-284 https://doi.org/10.1080/17442508608833428
  17. Duffie, D. and Kan, R. (1996). A yield-factor model of interest rate, Mathematical Finance, 6, 379-406 https://doi.org/10.1111/j.1467-9965.1996.tb00123.x
  18. Durham, G. and Gallant, R. (2001). Numerical Techniques for Maximum Likelihood Estimation of Continuous Time Diffusion Processes, Technical Report
  19. Elerian, O., Chib, S. and Shephard, N. (2001). Likelihood inference for discretely observed nonlinear diffusions, Econometrika, 69, 959-993 https://doi.org/10.1111/1468-0262.00226
  20. Eraker, B. (2001). MCMC analysis of diffusion models with application to finance, Journal of Business & Economic Statistics, 19, 177-191 https://doi.org/10.1198/073500101316970403
  21. Hurn, A., Jeisman, J. I. and Lindsay, K. (2007). Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations, Journal of Financial Econometrics, 5, 390-455 https://doi.org/10.1093/jjfinec/nbm009
  22. Kloeden, P. and Platen, E. (1999). Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin
  23. Marsh, T. A. and Rosenfeld, E. R. (1983). Stochastic processes for interest rates and equilibrium bond prices, Journal of Finance, 38, 635-650 https://doi.org/10.2307/2328002
  24. Nicolau, J. (2002). A new technique for simulating the likelihood of stochastic differential equations, Econometrics Journal, 5, 91-102 https://doi.org/10.1111/1368-423X.t01-1-00075
  25. Oksendall, B. (2003). Stochastic Differential Equations: An Introduction with Applications, Springer-Verlag, Berlin
  26. Pederson, A. R. (1995). A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations, Scandinavian Journal of Statistics, 22, 55-71
  27. Rogers, L. C. G. (1985). Smooth transitional densities for one-dimensional diffusions, Bulletin of the London Mathematical Society, 17, 157-161 https://doi.org/10.1112/blms/17.2.157
  28. Samuelson, P. A. (1965). Proof that properly anticipated prices fluctuate randomly, Industrial Management Review, 6, 41-50
  29. Shoji, I. and Ozaki, T. (1998). Estimation for nonlinear stochastic differential equations by a local linearization method, Stochastic Analysis and pplications, 16, 733-752 https://doi.org/10.1080/07362999808809559
  30. Vasicek, O. (1977). An equilibrium characterization of the term structure, Journal of Financial Economics,5, 177-188 https://doi.org/10.1016/0304-405X(77)90016-2