Abstract
In computer vision analysis of detecting concrete slab surface cracks, there are many difficulties to overcome. Target images often have defamations due to the light condition and other external environment. Another difficulties in detecting concrete crack image is that there is no clear distinction in intensity between the crack and the surface since the surface is often irregular. In this paper, we apply ART2 based quantization in order to classify target concrete slab surface images into several areas with respect to the light intensity. From those quantized areas, we investigate the distribution of real cracks and noises. Then, we extract candidate crack areas after applying noise removal process to areas which have be th oracle and noises. Finally, crack areas are recognized by using morphological features of cracks from such candidate areas. In experiment with real world concrete slab structure images, our algorithm has advantage in recognizing accuracy of cracks to other algorithms especially in relatively brighter areas of concrete surface.
영상에 나타난 콘크리트 표면의 균열은 그 획득 과정에서 빛이나 외부환경에 의해 훼손되는 경우가 발생한다. 또한 콘크리트 표면이 고르지 않고 균열과 표면의 명암도 차이가 거의 없기 때문에 정확한 균열을 검출하기 어렵다. 따라서 본 논문에서는 콘크리트 표면 영상을 밝기에 따라 여러 영역으로 구분하기 위해 ART2 기반 양자화를 적용한다. 양자화된 영역에서 균열과 잡음의 분포를 조사하여 균열과 잡음이 같이 존재하는 영역에서는 잡음 제거 과정을 수행한 후, 균열 후보 영역을 추출하고 균열 후보 영역에서 형태학적인 정보를 이용하여 잡음을 제거하여 최종 균열 영역을 검출한다. 실제 콘크리트 표면 균열 영상을 대상으로 실험 한 결과, 제안한 방법이 기존의 방법보다 콘크리트 표면의 밝은 영역에서 균열이 비교적 정확히 검출되는 것을 확인하였다.