The effects of ipriflavone on the periodontal reorganization following experimental tooth movement in the rat

Ipriflavone 투여가 백서의 실험적 치아이동 후 치주조직의 재형성에 미치는 영향

  • Min, Ji-Hyun (Department of Orthodontics, School of Dentistry, Chonnam National University) ;
  • Cho, Jin-Hyoung (Department of Orthodontics, 2nd Stage of Brain Korea 21, School of Dentistry, Dental Science Research Institute, Chonnam National University) ;
  • Lee, Ki-Heon (Department of Orthodontics, 2nd Stage of Brain Korea 21, School of Dentistry, Dental Science Research Institute, Chonnam National University) ;
  • Hwang, Hyeon-Shik (Department of Orthodontics, 2nd Stage of Brain Korea 21, School of Dentistry, Dental Science Research Institute, Chonnam National University)
  • 민지현 (전남대학교 치과대학 교정학교실) ;
  • 조진형 (전남대학교, 치의학연구소, 2단계 BK21 사업단, 치과대학 교정학교실) ;
  • 이기헌 (전남대학교, 치의학연구소, 2단계 BK21 사업단, 치과대학 교정학교실) ;
  • 황현식 (전남대학교, 치의학연구소, 2단계 BK21 사업단, 치과대학 교정학교실)
  • Published : 2008.10.30

Abstract

Objective: The purpose of this study was to examine the effect of ipriflavone on periodontal reorganization and prevention of relapse following tooth movement. Methods: Orthodontic rubber bands were inserted between the first and second maxillary molars of 27 white male rats for 3 weeks for experimental tooth movement. From one day before the removal of orthodontic rubber band, ipriflavone was administered 50 or 400 mg/kg daily in each experimental group whereas carboxymethyl cellulose solution was administered in the control group. They were sacrificed at the 5, 10, and 15th day from the day of removal of orthodontic rubber bands. The amount of relapse was evaluated by measuring the interdental space, and the extent of periodontal reorganization was compared through histological examination. Results: In case of ipriflavone administration, the amount and velocity of relapse was less and slower compared to the control group. In addition, the ipriflavone group showed more rapid periodontal reorganization compared to the control group. Conclusions: The results of the present study suggest that ipriflavone administration can be used effectively in the prevention of relapse following orthodontic tooth movement through the acceleration of periodontal reorganization.

본 연구는 치아이동 후 ipriflavone 투여가 치주조직의 재형성, 나아가 치아회귀 억제에 미치는 영향을 알아보기 위하여 시행되었다 웅성 백서 72마리를 대상으로 상악 좌우측 제1, 2구치 사이에 교정용 고무밴드를 끼워 제1, 2구치를 3주간 이동시킨 다음, 교정용 고무밴드 제거 1일 전부터 매일 체중 kg당 50 mg 또는 400 mg의 ipriflavone을 투여한 실험군과 ipriflavone을 투여하지 않은 대조군으로 구분하였다. 교정용 고무밴드를 제거함으로써 회귀가 나타나기 시작한 날로부터 5일 간격으로 15일까지 각각 실험동물을 희생시켜가며 치아회귀 거리를 계측하는 한편 치주조직 재형성 소견을 관찰하였다. Ipriflavone을 투여하고 치아회귀를 관찰한 결과 용량에 관계없이 대조군에 비하여 적은 양의 회귀를 나타내었으며 시간 간격에 따른 치아회귀를 관찰한 결과 대부분의 회귀가 5일째 나타난 대조군과 달리, 늦게 그리고 점진적으로 나타나는 양상을 보였다. Iprinavone을 투여하고 조직소견을 관찰한 결과 대조군에 비하여 치조골연이 매끄러운 양상을 보였으며 시간 간격에 따른 조직소견을 관찰한 결과 대조군에 비하여 치주인대 재배열이 빠르게 나타나는 양상을 보였다. 이상의 결과는 ipriflavone의 투여가 치주조직의 재형성을 통하여 회귀를 억제함으로 교정적 치아이동 후 보정에 도움이 될 수 있음을 시사하였다.

Keywords

References

  1. Reitan K. Principles of retention and avoidance of posttreatment relapse. Am J Orthod 1969;55:776-90 https://doi.org/10.1016/0002-9416(69)90050-5
  2. Edwards JG. A long-term prospective evaluation of the circumferential supracrestal fiberotomy in alleviating orthodontic relapse. Am J Orthod Dentofacial Orthop 1988;93:380-7 https://doi.org/10.1016/0889-5406(88)90096-0
  3. Proffit WR. Retention. In: Proffit WR, Fields HW editors. Contemporary Orthodontics. 3rd ed. St Louis: Mosby; 2000. p. 597-614
  4. Baumrind S. A reconsideration of the propriety of the "pressure-tension" hypothesis. Am J Orthod 1969;55:12-22 https://doi.org/10.1016/S0002-9416(69)90170-5
  5. Davidovitch Z, Finkelson MD, Steigman S, Shanfeld JL, Montgomery PC, Korostoff E. Electric currents, bone remodeling, and orthodontic tooth movement, II. Increase in rate of tooth movement and periodontal cyclic nucleotide levels by combined force and electric current. Am J Orthod 1980; 77:33-47 https://doi.org/10.1016/0002-9416(80)90222-5
  6. Reitan K. Tissue behavior during orthodontic tooth movement. Am J Orthod 1960;46:881-900 https://doi.org/10.1016/0002-9416(60)90091-9
  7. Reitan K, Kvam E. Comparative behavior of human and animal tissue during experimental tooth movement. Angle Orthod 1971;41:1-14
  8. Joondeph DR, Riedel RA. Retention and Relapse. In: Graber TM, Vanarsdall RL editors. Orthodontics: Current Principles and Techniques. St Louis: Mosby-Year Book; 1994. p. 908-50
  9. Saito M, Saito S, Ngan PW, Shanfeld J, Davidovitch Z. Interleukin 1 beta and prostaglandin E are involved in the response of periodontal cells to mechanical stress in vivo and in vitro. Am J Orthod Dentofacial Orthop 1991;99:226-40 https://doi.org/10.1016/0889-5406(91)70005-H
  10. Binderman I, Zor U, Kaye AM, Shimshoni Z, Harell A, Somjen D. The transduction of mechanical force into biochemical events in bone cells may involve activation of phospholipase A2. Calcif Tissue Int 1988;42:261-6 https://doi.org/10.1007/BF02553753
  11. Samuelsson B, Granstrom E, Green K, Hamberg M, Hammarström S. Prostaglandins. Annu Rev Biochem 1975;44:669-95 https://doi.org/10.1146/annurev.bi.44.070175.003321
  12. Norevall LI, Forsgren S, Matsson L. Expression of neuropeptides (CGRP, substance P) during and after orthodontic tooth movement in the rat. Eur J Orthod 1995;17:311-25 https://doi.org/10.1093/ejo/17.4.311
  13. Alhashimi N, Frithiof L, Brudvik P, Bakhiet M. Orthodontic movement induces high numbers of cells expressing IFN-gamma at mRNA and protein levels. J Interferone Cytokine Res 2000;20:7-12 https://doi.org/10.1089/107999000312685
  14. Adachi H, Igarashi K, Mitani H, Shinoda H. Effects of topical administration of a bisphosphonate (risedronate) on orthodontic tooth movements in rats. J Dent Res 1994;73:1478-84 https://doi.org/10.1177/00220345940730081301
  15. Giunta D, Keller J, Nielsen FF, Melsen B. Influence of indomethacin on bone turnover related to orthodontic tooth movement in miniature pigs. Am J Orthod Dentofacial Orthop 1995;108:361-6 https://doi.org/10.1016/S0889-5406(95)70033-1
  16. Kehoe MJ, Cohen SM, Zarrinnia K, Cowan A. The effect of acetaminophen, ibuprofen, and misoprostol on prostaglandin E2 synthesis and the degree and rat of orthodontic tooth movement. Angle Orthod 1996;66:339-49
  17. Wong A, Reynolds EC, West VC. The effect of acetylsalicylic acid on orthodontic tooth movement in the guinea pig. Am J Orthod Dentofacial Orthop 1992;102:360-5 https://doi.org/10.1016/0889-5406(92)70052-C
  18. Kim TW, Yoshida Y, Yokoya K, Sasaki T. An ultrastructural study of the effects of bisphosphonate administration on osteoclastic bone resorption during relapse of experimentally moved rat molars. Am J Orthod Dentofacial Orthop 1999;115:645-53 https://doi.org/10.1016/S0889-5406(99)70290-8
  19. Igarashi K, Mitani H, Adachi H, Shinoda H. Anchorage and retentive effects of a bisphosphonate (AHBuBP) on tooth movements in rats. Am J Orthod Dentofacial Orthop 1994; 106:279-89 https://doi.org/10.1016/S0889-5406(94)70048-6
  20. Clark WG, Brater DC, Johnson AR. Nonsteroidal anti-inflammatory antipyretic analgesics. Goth's Medical Pharmacology. 13th ed. St Louis: Mosby-Year Book; 1992. p. 356-73
  21. Han JW, Kim SH. Effects of bisphosphonates on developing hard tissues of the jaws in rats. J Dent Science 2001;13: 194-210
  22. Agnusdei D, Bufalino L. Efficacy of ipriflavone in established osteoporosis and long-term safety. Calcif Tissue Int 1997;61 Suppl 1:S23-7 https://doi.org/10.1007/s002239900381
  23. Kovacs AB. Efficacy of ipriflavone in the prevention and treatment of postmenopausal osteoporosis. Agents Actions 1994; 41:86-7 https://doi.org/10.1007/BF01986400
  24. Reginster JY. Ipriflavone: pharmacological properties and usefulness in postmenopausal osteoporosis. Bone Miner 1993;23: 223-32 https://doi.org/10.1016/S0169-6009(08)80099-2
  25. Gennari C. Ipriflavone: background. Calcif Tissue Int 1997;61 Suppl 1:S3-4 https://doi.org/10.1007/s002239900375
  26. Civitelli R. In vitro and in vivo effects of ipriflavone on bone formation and bone biomechanics. Calcif Tissue Int 1997;61 Suppl 1:S12-4 https://doi.org/10.1007/s002239900378
  27. Martini M, Formigli L, Tonelli P, Giannelli M, Amunni F, Naldi D, et al. Effects of ipriflavone on perialveolar bone formation. Calcif Tissue Int 1998;63:312-9 https://doi.org/10.1007/s002239900533
  28. Notoya K, Tsukuda R, Yoshida K, Taketomi S. Stimulatory effect of ipriflavone on formation of bone-like tissue in rat bone marrow stromal cell culture. Calcif Tissue Int 1992;51 Suppl 1:S16-20 https://doi.org/10.1007/BF02180244
  29. Notoya K, Yoshida K, Tsukuda R, Taketomi S. Effect of ipriflavone on expression of markers characteristic of the osteoblast phenotype in rat bone marrow stromal cell culture. J Bone Miner Res 1994;9:395-400 https://doi.org/10.1002/jbmr.5650090315
  30. Morita I, Sakaguchi K, Kurachi T, Murota S. Ipriflavone inhibits murine osteoclast formation in vitro. Calcif Tissue Int 1992;51 Suppl 1:S7-10 https://doi.org/10.1007/BF02180242
  31. Benvenuti S, Petilli M, Frediani U, Tanini A, Fiorelli G, Bianchi S, et al. Binding and bioeffects of ipriflavone on a human preosteoclastic cell line. Biochem Biophys Res Commun 1994;201:1084-9 https://doi.org/10.1006/bbrc.1994.1816
  32. Waldo CM, Rothblatt JM. Histologic response to tooth movement in the laboratory rat; procedure and preliminary observations. J Dent Res 1954;33:481-6 https://doi.org/10.1177/00220345540330040701
  33. Yokoya K, Sasaki T, Shibasaki Y. Distributional changes of osteoclasts and pre-osteoclastic cells in periodontal tissues during experimental tooth movement as revealed by quantitative immunohistochemistry of H(+)-ATPase. J Dent Res 1997;76: 580-7 https://doi.org/10.1177/00220345970760010901
  34. Civitelli R, Abbasi-Jarhomi SH, Halstead LR, Dimarogonas A. Ipriflavone improves bone density and biomechanical properties of adult male rat bones. Calcif Tissue Int 1995;56:215-9 https://doi.org/10.1007/BF00298613
  35. Cecchini MG, Fleisch H, Mühibauer RC. Ipriflavone inhibits bone resorption in intact and ovariectomized rats. Calcif Tissue Int 1997;61 Suppl 1:S9-11 https://doi.org/10.1007/s002239900377
  36. Perugini P, Genta I, Conti B, Modena T, Pavanetto F. Periodontal delivery of ipriflavone: new chitosan/PLGA film delivery system for a lipophilic drug. Int J Pharm 2003;252: 1-9 https://doi.org/10.1016/S0378-5173(02)00602-6
  37. Bonucci E, Ballanti P, Martelli A, Mereto E, Brambilla G, Bianco P, et al. Ipriflavone inhibits osteoclast differentiation in parathyroid transplanted parietal bone of rats. Calcif Tissue Int 1992;50:314-9 https://doi.org/10.1007/BF00301628
  38. Cheng SL, Zhang SF, Nelson TL, Warlow PM, Civitelli R. Stimulation of human osteoblast differentiation and function by ipriflavone and its metabolites. Calcif Tissue Int 1994;55: 356-62 https://doi.org/10.1007/BF00299315
  39. Lee YS, Kim YJ, Lee KH, Hwang HS. Effects of ipriflavone on bone remodeling in the rat calvarial cell. Korean J Orthod 2005;35:275-85
  40. Lindhe J, Karring T, Araujo M. The anatomy of periodontal tissues. In: Lindhe J, Lang NP, Karring T editors. Clinical Periodontology and Implant Dentistry. Oxford: Blackwell; 2008;5th ed. p. 27-31
  41. Maeder CL, Carnes DL, Graves DT. Alkaline phosphatase and osteocalcin levels in cells from periodontal explants. J Dent Res 1988;67:232, Abst. No. 958
  42. Piche JE, Carnes DL Jr, Graves DT. Initial characterization of cells derived from human periodontia. J Dent Res 1989; 68:761-7 https://doi.org/10.1177/00220345890680050201
  43. Roberts WE, Chase DC. Kinetics of cell proliferation and migration associated with orthodontically-induced osteogenesis. J Dent Res 1981;60:174-81 https://doi.org/10.1177/00220345810600021501
  44. Basdra EK, Komposch G. Transmission and scanning electron microscopic analysis of mineralized loci formed by human periodontal ligament cells in vitro. J Orofac Orthop 1999;60: 77-86 https://doi.org/10.1007/BF01298958