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New Upper Matrix Bounds for the Solution of the
Continuous Algebraic Riccati Matrix Equation

Richard Keith Davies, Peng Shi, and Ron Wiltshire

Abstract: In this paper, new upper matrix bounds for the solution of the continuous algebraic
Riccati equation (CARE) are derived. Following the derivation of each bound, iterative
algorithms are developed for obtaining sharper solution estimates. These bounds improve the
restriction of the results proposed in a previous paper, and are more general. The proposed
bounds are always calculated if the stabilizing solution of the CARE exists. Finally, numerical
examples are given to demonstrate the effectiveness of the present schemes.
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1. INTRODUCTION

Consider the continuous algebraic Riccati equation
(CARE):

ATP+PA-PBBRTP=-(, (1)

where 4eR™" is a constant matrix, (') denotes
the transpose, QeR”™” is a given symmetric
positive semidefinite matrix, BeR™™, and the

matrix Pe®R"™” is the unique symmetric positive
semidefinite solution of the CARE (1). To guarantee
the existence of the solution of the CARE, it is
assumed that (4,B) is a stabilizable pair and (4,C)

is a detectable pair, where Q=C T'c and CeRP™,

The Continuous Riccati equation is usually
employed to solve optimal control, robust control and
filter design problems in control theory [27-29].
Analytical solution of this equation is of considerable
time consumption and computational complexity,
particularly when the dimensions of the system
matrices are high. Solution bounds of this equation
can ease the computational efforts required to solve
this equation and give rough estimates for its actual
solution. Furthermore, solution bounds can be applied

Manuscript received June 8, 2006; revised January 24,
2008; accepted March 27, 2008. Recommended by Editor Jae
Weon Choi.

Richard Keith Davies, Peng Shi, and Ron Wiltshire are with
the Faculty of Advanced Technology, University of
Glamorgan, Pontypridd, CF37 1DL, United Kingdom. Peng
Shi is also with the ILSCM, School of Computer Science and
Mathematics, Victoria University, Australia; and School of
Mathematics and Statistics, University of South Australia. (e-
mails: richymath@aol.com, {pshi, rjwiltsh}@glam.ac.uk).

to deal with practical problems involving the solution
of this equation, and often the exact solution of the
CARE is not required, but rather bounds of the
solution. Therefore, during the past three decades, a
number of researches have been presented for
deriving solution bounds of this equation [1-20,23,25].
Types of solution bounds derived include bounds for
the eigenvalues of the solution and the solution matrix
itself. Of these findings, the matrix bounds are the
most general and preferable, because they can
immediately provide all extremal eigenvalue,
summation, trace, product and determinant bounds.
Viewing the literature, it appears that most of the
upper matrix bounds have been developed under the

assumption that the matrix BBT s nonsingular.
Recently, two upper matrix bounds were presented in

[20], which may work for the case when BB is
singular. The restriction for validity of these upper
bounds is that there exists a positive constant a
which satisfies the following matrix inequality:

A+ A" <2aBB". (2)

This condition is always met if BB is nonsingular,
and may, but not always, be met for the case when

BB" is singular. Given below is such an example [3,
Example 2] of when the condition (2) cannot be
fulfilled:

o 2) s3]

For these matrices, it is required to find a positive
value of o such that

2 3 00
<2a .
3 -14 0 6
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For this case, it is seen that there does not exist any
such a that will satisfy (2). As such, the upper
bounds proposed in [20] cannot work for this case. In
this note, we shall develop two new, similar upper
matrix bounds for the solution of the CARE based on
the results of [20], together with the idea of a
similarity transformation. The derivation of these
results also make use of the fact that the stabilizability
of the pair (4,B) means there will always exist

some matrix K such that A+ BK is stable. This is
a well-known fact in control theory, and has been used
in a number of research papers, such as in [23] and
[24]. After the derivation of each bound, an iterative
algorithm is developed that can be used to derive
tighter upper matrix bounds for the solution of the
CARE (1). In comparison, it is seen that the results of
[20] are merely special cases of these results.
Therefore, this work can be considered to be a
generalization of the work of [20]. Finally, we give
numerical examples to demonstrate the effectiveness
of our results and give comparisons with existing
results.

The following symbol conventions are used in this
note. R denotes the real number field; the inequality
A>(>)B means A-B is a positive (semi)definite

matrix; A;(A4) denotes the i th eigenvalue of a
A4 for
A;(A) is arranged in the nonincreasing order (i..,
MA) 2 (A) 2. 20, (4);  p(A4)
matrix measure of matrix 4 and Re(A(A)) is the real

symmetric matrix i=1,2,...n whereas

denotes  the

part of an eigenvalue of matrix 4; the identity matrix
with appropriate dimensions is represented by /.
Before developing the main results, we shall review
the following useful lemmas:
Lemma 1 [21]: For any symmefric matrices
X,YeR™ and 1<i, j<n, the
inequality holds:

Mg ja (X + ) S (X)+0(Y), i+j<n+l,

following

Lemma 2 [21]:
X e ™", the following inequality holds:

X <N (X)L

For any symmetric matrix

Lemma 3 [21]: For any matrix 4 eR™"” and any
positive semidefinite matrices X,Y € R such that
X>Y>(2)0, it holds that 4’ Xx4>A"v4, with

strict inequality if X and Y are positive definite
and A is of full rank.

2. MAIN RESULTS

In this section we shall develop the main results of
this paper. First, we shall derive an upper matrix

bound for the CARE, followed by the development of
an iterative algorithm which can be used to derive
tighter upper matrix bounds for the CARE. Then, we
shall derive a second upper matrix bound for the
solution of the CARE, also accompanied by a second
iterative algorithm which can also be used to derive
more precise upper matrix bounds for the solution of
the CARE.

Theorem 1: Let P be the positive semidefinite

solution of the CARE (1) and let P be the positive
semidefinite solution of the modified CARE (8). Then
P and P have the upper bounds
P<w Tl +Df (W+D)+1] G
+MT@+kTK)M W =y,

and

P<MIw T (oW +D) W +1)+1] @

+MTO+KTK)M YW M =P,
respectively, where the positive constant p and
matrix W are defined, respectively, by
MW M TQ+K K)M W

=y T+ w+n+1w™h
W=MUA+BKOM ' =1 (6)

p= (5)

and the matrix K eR™" is chosen to stabilize

A+BK, and the nonsingular matrix M e R"" is
chosen such that

MA+BKOM  + M4+ BKYMT <0, (7)

Proof: Using the similarity transformation, we can
define the following similarity variables:

A=MAM™", B=MB,
o=MmTom™, P=MTPM,

where M is a nonsingular matrix. Using these
similarity variables, the CARE (1) is equivalent to the
following modified CARE:

4 +PA-PBB P=-0. ®)

By use of the matrix identity

=T =T
=[KM'+B PI'[KM'+B P)
M TKTkM™ =M TKTB P-PBKM™,
where K € R™” the modified CARE (8) becomes

P(A+BKM Y+ (4+BkM ' P
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+Q+M Tk kM o)
—[kM ' +B P/ (kM +B D).
With the aid of the identity
wrPW =W + )T POW +1)— P(4+ BKM™")
~(A+BKMY P+ P,
where the matrix W is defined by (6), (9) can be
rewritten as

W+D'PW+D+P+ M T(Q+KTK)M™!
wTPW + KM~ +B P [KM™' +B P] (10)
>wlpw.

Since Re (A(M(A+BK)YM™))<u(M(4+BK)M™")

=Ly (M(4+BEYM™ + M7 (4+ BK)MT), one can

see that satisfaction of condition (7) ensures the
nonsingularity of W. Using Lemma 3, (10) becomes

P<w W +DTPW +1)+P

11
+MTo+kTK)M W, (0

Utilizing Lemma 2, (11) becomes

P<w W+ DT W+ 10+ 1w 4 (P)

12
+w M T+ kTK)M WL, (12

Application of Lemma 1 to (12) leads to
Ay (P)
<hw W+ DT w s D+ 1w 4 (P)
+w T M T +kTKYM W™y (13)
SR + DT W + D+ 1w YA (P)
+ AW T IMTO+kTK)M W,
Using the well-known fact that 4;(XY) =4, (¥YX) for

any X,YeR™” and i=12,...,n, wehave

aw T w+nTw D+ 1w
W+ DT W+ D+ NWTwy ™y
= {WTw+w+wT 20 wTw) ™.

It Wiw+w+wT +21 <wTW, thenitis seen that

Ww T w+nTw+n+ 1w <y,

which is equivalent to the condition (7). Under the
satisfaction of condition (7), (13) implies

(P A T T o+kTKYM W]
N w1 W+ e Yy (14)
=p.

Substituting (14) into (12) into leads to the upper
bound (3) for the solution of the modified CARE (8).
Now, since P=MTPM™" and P< Puy1, a further
application of Lemma 3 to the upper bound (3) leads
to the upper bound (4) for the solution of the CARE
(1). This completes the proof of the theorem. 0

Having developed Theorem 1, the following
iterative algorithm can be used to get together upper
matrix bounds for the solution of the CARE (1), by
first getting tighter upper matrix bounds for the
solution of the modified CARE (8).

Algorithm 1:

Step 1: Set Ro = P < Py

Step 2: Compute

Ren =TI+ DR W +D+R,

(15)
+MTO+KTROM W, k=0,1,....

The matrices R; are also upper solution bounds of

the modified CARE (8). Then, R, =M' RkM are

upper bounds for the solution of the CARE (1).
Proof: Set k=0 in(15)to get:

R =WT[(w+DT Ro(W + 1)+ Ry

(16)
+M T+ KM
Using Lemma 2, we have from (16) that
R<W T (W + DT W +1)+ 1 (Ro) (17

+MTO+kTK)M YW,

By the definition of Ro =Py and the upper bound
(3), we have
A (Ro)
MO + DT W + D+ 1)
+MTQ+KTK)M Y
< Tw+nTw+n+nwhe
+a{m TMT+kTK)M ' (18)
_ {1 M T+ KTK)M"M‘l]}p

p
+ AW TM T O+KTKOM M
=p,

where Lemma 1, the condition (7) and (5) have been
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employed. Substituting (18) into (17) gives

Ri<W T (oW + 1) W+1)+1] (19)
+MTQ+KTK)M W =Ro.

Now assume that Ek sﬁk_l. Then
Rist =W T + DT Re(W + 1)+ Rk
+MTO+kTKM !
<WTUW + DT Rect (W + 1) + Ri—1
+ M TQ+KTK)M "W =Re.

Using mathematical induction, one can reach the
conclusion that

Rk <Ri-1<...<Ri <Ro. (20)

Using Lemma 3 with the fact that Re=MT
RiM™!, (19)is equivalent to

Rk SRk—l SSR] SRO

This completes the proof of the algorithm.

A second upper matrix bound is obtained as follows.

Theorem 2: Let P and P be the positive
semidefinite solution of the CARE (1) and modified
CARE (8) respectively. For any matrices K and M

chosen to fuifil the condition (7), P and P have
the respective upper bounds

P<w T +20)T W +21) an
2MTO+K KM "W =Pya

and
P<M W Tpw +20T (W +21)

-T T -1 -1 (22)
oM T+ KT KM WM =R,

where the positive constant p and matrix W are

defined by (5) and (6) respectively.
Proof: Using the definition of W from (5), (9)
can be rewritten as

W+ P+PW+D)+ M T (Q+KTK)M™! 3

_tkM +B PI[KM™ + B P).
Multiplying both sides of (22) by 2 and adding
wT PW  to both sides gives:

wTPWw + 2w P+ 2PW +4P

oM T E+kTKYM™!
_ © lr_ 24
=wTPw+[kM~' +B PY[KM™'+B P]
>wlpw.

By realizing that

wTPw + 2w P+2PW +4P
=W +20 P(W +2I)

(23) becomes

wT W < +20)T POW +21) 25)
oM T Q+KTK)M ™

By use of Lemma 3, (24) becomes

P<w W +2DT POW +2I)

26
oM T+KTK)M W (26)

Applying Lemma 2 to (25) results in

P<w TP +2D (W +21)

(27)
+2M T +kTK)M W,

Utilizing Lemma 1, (26) becomes

A (P)
<MW TP + 20T W +21)
2 T o+kTKM T (28)
<P T INEPYW + 20T (W + 20w
+o T IM T+ KTK)M Wy,
Along the lines of Theorem 1, it can be seen that
under the satisfaction of condition (7), A, {W_T w
20T + 20w <1 and (27) then implies that

MW T T+ K K)M '
=M T+ 20 W+ 20w
Conr T T+ kT MW
=N D W DY
=p,

M(P) <

29)

where p is defined by (5). Substituting (28) into (2

6) leads to the upper bound (20) for the solution of the
modified CARE (8). Application of Lemma 3 to (20)
results in the upper bound (21) for the solution of the
CARE (1). This finishes the proof of the theorem.
Having derived a second upper matrix bound for
the solution of the CARE (1), we can propose the
following iterative algorithm to derive tighter upper
matrix bounds for the solution of the CARE (1).
Algorithm 2:

Step 1: Set So = Pya.
Step 2: Compute
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Skt =T + 20 Sp (W +20)
+2M TO+KTKM W, k=0,1,...

Then, Sk are also upper solution bounds of the

modified CARE (8). Then, S, =M TSiM are upper

solution bounds of the CARE (1).
Remark 1: From (22) and (4), we have

By =MW T lpw+DT (W +1)
+ M TQ+KTK)M ™ +pw +wT +20)
+MTO+KTK)M ' WM
=B+ MW T pw +wT +21)
+MTO+kTK)M WM.

As such, if p(W +WT +20)+ M T (Q+KTK)M™
>0 then B is tighter than £,,, whereas if
oW +WT 2D+ M TO+KTKOM™' <0 then
By, istighter than Fyq.

Remark 2: In fact, there always exists matrices K
and D that satisfy the condition (7), so the upper
bounds of this work are always calculable if the

solution of the CARE exists. Using Lemma 3, it can
be seen that condition (7) and the following condition

P, (A4+BK)+(A+BK) P, <0, (30)

where P=M"M, are equivalent. Since the pair
(4,B) are assumed to be stabilizable, there will
always exist a matrix K stabilizing 4+ BK. Then,
since 4+ BK is stable, there always exist a positive
definite matrix Py, yielding (29) by the Lyapunov
Theorem. As such, there will always exist matrices K
and M rendering the conditions (7) and (29).
Therefore, the bounds proposed here can always work
if the stabilizing solution of the CARE (1) exists. We
may use the following procedure to test the
satisfaction of condition (29), and hence condition (7):

Step 1: Choose a matrix K e®R™" so that
A+BK is stable, i.e., so that Re},(4+BK)<0
Vi. There are a number of methods in the literature
that can be used to construct X to arbitrarily assign the
eigenvalues of A+ BK, see for example [26].

Step 2: Choose a symmetric positive definite
matrix P, so that (29) is satisfied.

Step 3: From knowledge of Py, a possibility for

M is M =P]}}2. The square root of P, may be

found be several methods, see for example [21] and
the references therein.
Having chosen a matrix K that stabilizes 4+ BK,

an alternative to Step 2 of the above procedure is to

solve a Lyapunov equation of the form
Py (A+BK)+(4+BK) P, =k,

where k is any positive constant and Py, is the
solution matrix.

Remark 3: When M =] and K =-aB’ , where

o is a positive constant, the upper bounds (4) and
(22) derived in this note decompose into the upper
bounds presented in [20], as do the iterative
algorithms. The theorems and algorithms presented
above are based on [20] and modified to cover the
case that the restriction (3) of [20] is not valid.
Application of this modification leads to less
restrictive, more general results. The tightness
between the bounds reported in [20] and those
presented here depend, respectively, on the choices of
the matrices K and M for our bounds and the value of
the positive constant o for the bounds of [20].

Remark 4: The following upper matrix bound for
the CARE (1) was derived in [19]:

P<E'EQ+ATUMHEI?E =Py, (31)

where the positive definite matrix U; is chosen such

that E=(BB' -U} Y2 50. With a suitable choice
of Uj, it was shown in [19] that the bound (30) is

tighter than the parallel results proposed in [16] and
[17], and that the corresponding eigenvalue bounds
are also sharper as a result. To ease the calculation of
bound (30), some choices of U; were listed in [19],

together with the range of tuning parameters involved.
These choices are re-listed in the table at the end of
this paper. As it was mentioned above, most of the
existing upper matrix bounds for the CARE have to

assume that the matrix BB’ is nonsingular for them
to be able to work. Recently, two upper matrix bounds
were derived in [20], which may work for the case

when BB is singular, but are only valid under a
condition that is more conservative than the
fundamental existence conditions for the solution of
the CARE. Our upper bounds can always work if the
solution of the CARE exists. It appears that the
tightness between most of the existing results and
those presented here cannot be compared
mathematically. They do, however, provide a
supplement to each other.

Remark 5: In [22], an iterative technique was
proposed to solve the CARE (1). This technique shall
be re-stated as follows:

Step 1: Choose a positive definite matrix £, such

that A—BBTPO is stable.
Step 2: Let Py be the solution of the following
Lyapunov-type matrix equation:
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Py(A—BB" Py ) +(4-BB' Py_)| Py
=—(Q+ PN_]BBTPN_I ), N=12,...

Then, limy_,,, Py =P, where P is the solution of
the CARE (1). In [23], it is seen that if B, is an

upper bound of P, then the matrix A-BBT Py is

stable, so we could choose the presented upper bounds
By or By, as the initial matrix F) and solve the

CARE (1) by this algorithm. This is yet another
application of the solution bounds, and this can also
reduce the possible conservativeness of the bounds in
sense of tightness.

Remark 6: From (9), (10) and the standard results
of optimal control theory, it is seen that the choice of
the matrix K which results in the optimal upper

bound for the solution of the CARE is K =-BP.
One way to deal with the possible conservativeness of
the tightness of the proposed upper bounds is to utilize
the algorithm of Remark 5, using the upper bounds
presented in this note as the starting point.

3. NUMERICAL EXAMPLES

In this section, we shall give two numerical
examples to demonstrate the effectiveness of the
proposed results of this paper. The first example will

concentrate on the case BB is singular, whilst the

second example will focus on the case BB is
nonsingular. In both examples, use is made of the
algorithm stated in
Example 1: BB is singular [3, Example 2]
Consider the CARE (1) with:

e 1 3 5= 0 0- 8 0

o =70 Ve T o 8
Then the unique positive definite solution of the
CARE (1) is:

8 2
Foxact = 7 1l

Since the matrix BB is singular for this example, the
upper matrix bounds reported in [16,17,19] cannot
work for this case. Also, the bounds presented in [20]
cannot work here, because the restriction (2) cannot
be met for any value of the positive constant a.
However, our results can be applied to this case.

] s 2.3942 0.8172
With K=[——— —} and M= ,
NG 0.8172 1.0322

the upper bounds F; and F,, are found by
Theorems 1 and 2 to be:

[40.5290 19.2792
U‘{19.2792 13.3086}
202089 11.9373
U2=L1.9373 10.1383}'

Here, we have that F;, is the tighter bound. Using 2

iterations of Algorithm 2, we can derive the following
tighter upper matrix bounds for the solution of the
CARE (1):

Y71 73026 5.2766

15.5580 7.0187
7.0187 4.5810

_ {15.6829 7.3026}

H =

It is seen that as more iterations are performed, the
bounds become tighter. By using the upper bound
By, as the initial matrix Fy, three iterations of the
algorithm stated in Remark S provides the following,

tighter approximations to the actual solution of the
CARE:

{6.5056
=

6.1153
9.5227
2 =

6.1153
4.8165}’
3.4262
3.4262 }
8.5563
[2.3239

1.9381

2.3239
1.1939 |

P3 =
Even though the upper bound F,, is somewhat

conservative in sense of tightness, the iterates above
demonstrate that even with a conservative starting
point, the actual solution can fast be approached.

Example 2: BBT is nonsingular [19, Example]
Consider the CARE (1) with:

-3 0.5 2 0 3 02
A= , B= , 0= .
0.1 02 0 1 02 3
Then the unique positive definite solution of the
CARE (1) is:
10.3967 0.0936
et 7100936 1.9603 |
-1 -0.25
-0.1 =2
bounds F,; and F,, are found by Theorems 1 and
2 to be:

24579 0.0387
U= »

With K =[ } and M =1, the upper

0.0837 2.6609
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1.2701 -0.0162
PU2 = .
-0.0162 2.0728

Here, it is seen that F;, is the tighter bound. Using

2 iterations of Algorithm 2, we can obtain the
following tighter upper matrix bounds for the solution
of the CARE (1):

0.9636 0.0921
‘:{0.0921 1.9708}’
0.6511 0.0949
2:[0.0949 1.9625}'

It can be seen that as more iterations of the
algorithm are carried out, the bounds become tighter.

By using the upper bound F;, as the initial matrix
Fy, three iterations of the algorithm stated in Remark
5 provides the following, tighter approximations to

the actual solution of the CARE:
05859 0.0647
1710.0647 1.9678 |

_[0.4102 0.0910

27100910 1.9609 |

0.3967 0.0909
0.0909 1.9601 |

3=

As in Example 1, the above iterates demonstrate
that the algorithm stated in Remark 5 can deal with
the possible conservativeness of the solution bounds
proposed in this paper.

Since the upper bounds proposed in [20] are merely
special cases of our upper bounds, we will not make a
comparison with them. Instead, we shall compare our

upper bounds only with the upper bound £,

Table 1. Choices of the matrix U; and the range of

parameter e.

U Range of parameter ¢
(BBT —¢en)! 0<e<\,(BB)
(BBT -0 7?)! 0<e<\,(BBTQ?)
(BBT —¢0%)! 0<e<A,(BBTO™?)
11 0<e<h,(BB")
eQ e>(Q"'(BB")™)
0™ e> (BB
g(44")! e>%(4(BBTY 4"
e(404"y! e> % (04(BBT Y1 4T

reported in [19]. Table 1 summarizes choices of the
positive definite matrix U; for the bound F;.

Using these choices, we shall now compare our
bounds with the bound FA;; reported in [19]:

[2.5444 0.0249
U3™10.0249 2.0213

when €=0.95 and U = (BBT —e1)!

[15.8235  0.0575
U371 0.0575 11.8727

when £=5 and U; =(BBT —e0 %)

0.1766 -0.0150
B3 =
-0.0150 0.1766

when £=0.05 and U, =(BB" —e0%)"!

2.4484
U3 =

—0.2801
-0.2801

2.5712

when £=0.5 and U =é1

2.2249
U3 =

-0.2827
—0.2827

3.1449

when £€=0.5 and U; =eQ

2.1683 —0.4448
Rz =
—-0.4448 3.6393

when ¢=4 and U, = Q™!

2.5611
B3 =

—0.0465
-0.0465

2.4729

when £=3 and U1=z—;(ATA)_1

2.5611 -0.0465
Ry =
-0.0465 2.4729

when €=8 and U] =8(ATQA)_1.

In view of the above numerical experiments, it
appears that our bounds give more precise solution
estimates than the bound F};; for this case.

4. CONCLUSIONS

The derivation of new upper matrix bounds for the
solution of the CARE is the focus of this paper.
Following the derivation of each bound, an iterative
algorithm was proposed to derive sharper upper
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matrix bounds. The bounds reported here are based on
the results of [20], in which the results of [20] are
extended and generalized. The restriction for validity
(3) of [20] has been removed, and replaced with the
less restrictive condition (7) of this note. The
advantage of these new upper matrix bounds for the
CARE over existing results is that they are always
calculable if the stabilizing solution of the CARE
exists, whereas existing upper matrix bounds might
not be calculated, because they require other
restrictions for validity in addition to the existence
conditions for the CARE. When using the similarity
transformation, the upper bounds for the solution of
the CARE retain their validity. The numerical
examples demonstrate that the presented bounds are
tighter than existing ones for some cases. From (9)
and the standard results of optimal control theory, it is
known that the choice of K which gives the best upper

solution bounds is K =—B7 P, but thete remains the
question as to which choice of the matrix D gives the
best upper bounds. It is expected that future research
will propose a method that can determine which
choice of the matrices K and D give the best upper
bounds for the CARE solution, which could also cope
with the possible conservativeness of the upper
solution bounds, as seen in the numerical examples.
The problem of determining which choice of K and D
result in the optimal upper matrix bounds could be
considered as an optimization problem.
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