DOI QR코드

DOI QR Code

Seasonal Variations of Size-structured Phytoplankton in the Chunggye Bay

청계만 식물플랑크톤 크기구조의 계절적 변동

  • Ji, Sung (Division of Ocean System Engineering, Mokpo National Maritime University) ;
  • Sin, Yong-Sik (Division of Ocean System Engineering, Mokpo National Maritime University) ;
  • Soh, Ho-Young (Division of Marine Technology, Chonnam National University)
  • 지성 (목포해양대학교 해양시스템공학부) ;
  • 신용식 (목포해양대학교 해양시스템공학부) ;
  • 서호영 (전남대학교 해양기술학부)
  • Published : 2008.11.30

Abstract

Three embankments are located in the Chunggye Bay, each named as Changpo, Bokkil and Kuil and environmental changes are expected due to freshwater input. To investigate this phenomenon, three sample sites in front of each embankment gate were selected in Nov. 2006(autumn), Feb. 2007(winter), May. 2007(spring) and Aug. 2007(summer). At every point of embankment spot, large cells(micro-size, >$20\;{\mu}m$) of phytoplankton were turned out to be a major cause of algal bloom in Feb. 2007 and nano-size($2-20\;{\mu}m$) phytoplankton became dominant during rainy season. In rainy season, each point of embankment showed low salinity and transparency with higher ammonium and phosphorus concentrations than dry season. However, the number of phytoplankton has decreased and it is expected that freshwater influx has more influence on high turbidity and radical decrease of salinity than nutrient. According to the results of this study, therefore, nutrient could have more influence on growth of phytoplankton in dry season, but high turbidity and radical changes of salinity have more influence in rainy season.

청계만에는 3개의 방조제(창포, 복길, 구일)가 위치하고 있고 이로부터 유입되는 담수로 인한 환경의 변화가 예상된다. 이를 조사하기 위해 2006년 11월(가을), 2007년 2월(겨울), 5월(봄), 8월(여름)에 각 방조제 앞에서 3개 정점을 선정하였다. 각 방조제 정점에서 대발생은 갈수기인 2007년 2월에 대형식물플랑크톤에 의해 발생하였고 풍수기에는 중 형식물플랑크톤이 우점하는 분포를 나타냈다. 각 방조제 정점에서 풍수기에는 담수의 유입으로 인하여 염분과 투명도는 낮고 암모늄과 인산염은 갈수기인 2007년 2월보다 높게 나타났지만 식물플랑크톤 생체량은 낮게 나타났는데 이는 담수의 유입으로 인한 높은 탁도나 염분의 급격한 감소가 영양염류보다 더 영향을 미치는 것으로 사료된다. 즉 본 조사해역에서 갈수기인 2007년 2월에는 식물플랑크톤의 성장에 영양염류가 영향을 미치지만 풍수기에는 높은 탁도나 급격한 염분변화가 영양염류보다 더 큰 영향을 미치는 것으로 판단된다.

Keywords

References

  1. 박경양, 1994. 복길 간척지 주변 해역의 식물플랑크톤의 군집에 관한 연구. Bulletin of Institute of Littoral Environment 11:81-90
  2. 송태곤, 1997. 전남 무안군의 4개 소하천의 저서무척추동물 및 담수어류상. Bulletin of Institute of Littoral Environment. 14:27-34
  3. 신용식, 서호영, 현봉길, 2005. 해수층의 염분 변화가 일차생산자와 상위소비자의 크기구조에 미치는 영향. 한국해양학회지. 10(2): 113-123
  4. 심재형, 1994. 한국동식물도감 제34편 식물편 해양식물플랑크톤
  5. 양성렬, 송환석, 문창호, 권기영, 양한섭, 2001. 낙동강 하구역의 담수유입에 따른 해양환경 및 일차생산력 변화. 한국조류학회지. 16(2): 165-177
  6. 양은진, 최중기, 2003. 경기만 수역에서 미세생물 군집의 계절적 변동 연구 ll. 미소형 및 소형 동물플랑크톤. 한국해양학회지. 8: 78-93
  7. 이상현, 신용식, 양성렬, 박 철, 2005. 아산만 식물플랑크톤의 계절별 군집분포 특성 한국해양학회지. 27: 149-159
  8. 최광현, 황순진, 김호섭, 한명수, 2003. 팔당호 식물플랑크톤의 제한영양염과 성장률의 경시적 변화. 한국육수학회지. 26(2):139-149
  9. 현봉길, 신용식, 박 철, 양성렬, 이영준, 2006. 아산만 식물플랑크톤 크기구조의 시공간적 변동. 한국환경생물지. 24(1): 7-18
  10. Amstrong R.A. 1994. Grazing limitation and nutrient limitation in marine ecosystems: steady state solution of an ecosystem model with multiple food chains. Limnol. Oceanogr. 39(3): 597-608 https://doi.org/10.4319/lo.1994.39.3.0597
  11. Anderson G.C. 1965. Fractionation of phytoplankton communities off the Washington and Oregon coasts. Limnol. Oceanogr. 10:477-480 https://doi.org/10.4319/lo.1965.10.3.0477
  12. Boyer, J.P., R.R. christian and D.W. Stanley, 1993. Patterns phytoplankton primary productivity in the Neuse River estuary, North Carolina, USA. Mar. Ecol Prog. Ser. 97: 287-297 https://doi.org/10.3354/meps097287
  13. Bold H.C. and M.J. Wynne, 1985. Introduction to the algae. 2nd Ed. Prentice-Hall Inc. Englwood Cliffs, New Jersey, pp. 720
  14. Boynton W.R., W.M. Kemp and C.W. Keefe, 1982. A comparitive analysis of nutrients and other factors influencing estuarine phytoplankton production, in. Estuarine Comparisons, edited by V. Kennedy, Academic Press, New York, pp. 69-90
  15. Brook A.J. 1965. Planktonic Algae as indicators of lake types, with special reference to the desmidaceae. Limnol. Oceanogr. 10: 403-411 https://doi.org/10.4319/lo.1965.10.3.0403
  16. Caraco N.F., J.J. Cole, P.A. Raymond, D.L. Strayer, M.L. Pace, S.E.G. Findlay, D.T. Fisher, 1997. Zebramussel invasion in a large, turbid river: Phytoplankton response to increased grazing. Ecol. 78(2): 599-602
  17. Carpenter S.R., J.F. Kitchell, J.R.Hodgson, P.A. Cochran, J.J. Elser, M.M. Elser, D.M Lodge, X. Kretchmer., X. He, C.N. von Ende, 1987. Regulation of lake primary productivity by food web structure. Ecol. 68: 1863-1876 https://doi.org/10.2307/1939878
  18. Chapman V.J. 1968. The algae. Macmillan London, Melbourne, Toronto St Martis Press, New York, pp. 472
  19. Cloren J.E., A.E. Alpine, B.E. cole, R.L.J. Wong, J.F. Arthur and M.D. Ball, 1983. River discharge controls phytoplankton dynamics in the northern San Francisco Bay Estuary. Mar. Ecol Prog. Ser. 16: 415-429
  20. Coffin B. Richard, Sharp and H. Jonathan, 1987. Microbial trophodynamics in the Delaware Estuary. Mar. Ecol Prog. Ser. 41: 253-266 https://doi.org/10.3354/meps041253
  21. Dodge J.D. 1975. The fine structure of algal cells. Academic Press, Inc. London, pp. 261
  22. Durbin E.G., R.W. Krawiec and T.J. Smayda, 1975. Seasonal studies on the relative importance of different size fractions of phytoplankton in Narragansett Bay(USA). Mar. Biol. 32: 271-287 https://doi.org/10.1007/BF00399206
  23. Fisher T.R., L.W. Harding, D.W. Jr., Stanley and L.G. Ward, 1988. Phytoplankton, nutrient and turbidity in the Chesapeake, Delaware and Hudson estuaries. Mar. Ecol Prog. Ser. 27: 61-93
  24. Fugimoto, N. and R. Sudo, 1997. Nutrient-limited growth of Microcystis aerugimosa and Phormidium tenue and competiton under various N:P supply ratios and temperatures. Limnol. Oceanogr. 42: 250-256 https://doi.org/10.4319/lo.1997.42.2.0250
  25. Smith, V.H, 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Sci. 221: 669-671 https://doi.org/10.1126/science.221.4611.669
  26. Gallegos, C.L., T.E. Jordan and D.L. Correl, 1992. Eventscale response of phytoplankton to watershed inputs in a subestuary: Timing, magnitude, and location of blooms. Limnol. Oceanogr. 37(4): 813-825 https://doi.org/10.4319/lo.1992.37.4.0813
  27. Goldman, J.C. and J.H. Ryther, 1976. Temperature-influenced species competiton in mass cultures of marine phytoplankton. Biotechnol. Bioeng. 18: 1125-1144 https://doi.org/10.1002/bit.260180809
  28. Harper, D. 1992. Eutrophication of freshwater. Principles, problems and restoration. Champman and Hall, London, pp. 329
  29. Hein, M., M.F. Pedersons and K. Sand-Jensen, 1995. Size-dependent nitrogen uptake in micro-and macroalgae. Mar. Ecol Prog. Ser. 118: 247-253 https://doi.org/10.3354/meps118247
  30. Hellawell J.M. 1986. Biological indicators of freshwater pollution and environmental management. Elsevier Applied Science Publishers, pp. 546
  31. Kemp W.M. and W.R. Boynton, 1981. External and internal factors regulating metabolic roles of an estuarine benthic community. Oecol. 51: 19-27 https://doi.org/10.1007/BF00344646
  32. Kirk J.T.O. 1994. Light and Photosynthesis in Aquatic Ecosystems. p.75-77. Cambridge University Press, Cambridge, England
  33. Kivi K., S. Kaitala, H. Kuosa, J. Kuparinen. E. Leskinen, R. Lignell, B. Marcussen and T. Tamminen, 1993. Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Limnol. Oceanogr. 38(5): 893-905 https://doi.org/10.4319/lo.1993.38.5.0893
  34. Lamont-Doberty Geological Observatory, 1979. Effects of 22-$\mu$m screens on size-frequency distributions of suspended particles and biomass estimates of phytoplankton size fractions. Limnol. Oceanogr. 24(5): 956-960 https://doi.org/10.4319/lo.1979.24.5.0956
  35. Loftus M.E., D.V. Subba Rao and H.H. Seliger, 1972. Growth and dissipation of phytoplankton in Chesapeake Bay. I. Response to a large pulse of rainfall. Chesapeake Science 13: 282-99 https://doi.org/10.2307/1351112
  36. Malone T.C. 1971. The relative importance of nanoplankton and netplankton as primary producers in the California Current System. Fish. Bull 69: 799-820
  37. Malone T.C., L.H. Crocker, S.E. Pike and B.W. Wendler, 1988. Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary. Mar. Ecol. Prog. Ser. 48: 235-249 https://doi.org/10.3354/meps048235
  38. Malone T.C. and M.B. Chervin, 1979. The production and fate of phytoplankton size fraction in the plume of Hudson river, New York Bight. Limnol. Oceanogr. 24: 683-696 https://doi.org/10.4319/lo.1979.24.4.0683
  39. Marshcall, H.G. ajd W.A. Raymond, 1988. Spatial and temporal diatom assemblages and other phytoplankton within the lower Chespeake Bay, USA. Diatom symposium
  40. McCarthy, J.J., W.R. Taylor and M.E. Loftus, 1974. Significance of nanoplankton in the Chesapeake Bay Estuary and problems associated with the measurement of nanoplankton productivity. Mar. Biol. 24: 7-16 https://doi.org/10.1007/BF00402842
  41. Pennock, J.R. 1985. Chlorophyll distributions in the Delaware Estuary: Regulation by light-limitations. Mar. Ecol Prog. Ser. 21: 711-725
  42. Parsons T.T., Y. Maita and C.M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Peramon Press, New York, pp. 22-25
  43. Parsons T.R. and R.J. LeBrasseurn, 1970. The availability of food to different trophic levels in the marine food chain, pp. 325-343
  44. Rythrer J.H. 1969. Photosynthesis and fish production in the sea. Sci. 166: 72-76 https://doi.org/10.1126/science.166.3901.72
  45. Sin Y.S. and J.M. Kim, 2003. Relative importance of Bottom-up vs. Top-down controls on Size-structured Phytoplankton Dynamics in a Freshwater Ecosystem; I. Temporal and Spatial vatiations of size structure Korean J. Limnol. 36: 403-412
  46. Steemann Nielsen E. and E.A. Jensen, 1957. Primary oceanic production the autotrophic production of organic matter in the ocean. Galathea Rep. 1: 49-136
  47. Sundbaeck K., B. Joensseon, P. Nilsson and I. Lindstroem, 1990. Impact of accumulating drifting macroalgae on a shallow-water sediment system: An experimental study, Mar. Ecol Prog. Ser. 58(3): 261-274
  48. Watanabe T., 1962. On the Biotic. Index of Water Pollution based upon the species Number of Bacillariophyceae in the Tokoro River in Hokkaido(in Japanese). Japan J. Ecol. 12: 216-222
  49. Wafer M.V.M., P.I. Le Corre and J.L. Birrien, 1983. Nutrients and primary production in permanently well-mixed temperate coastal water. Mar. Ecol. Prog. Ser. 17: 431-446
  50. Walsh J.J. 1976. Herbivory as a factor in patterns of nutrient utilization in the sea. Limnol. Oceanogr. 21: 1-13 https://doi.org/10.4319/lo.1976.21.1.0001
  51. Welschemeyer and Lorenzen, 1985. Role of herbivory in controlling phytoplankton abundance: annual pigment budget for a temperate marine fjord. Mar. Biol. 90(1): 75-86 https://doi.org/10.1007/BF00428217
  52. Yentsch C.S. and J.H. Ryther, 1959. Relative significance of the net phytoplankton and nanoplankton in the waters of Vineyard Sound. J. Cons. Cons. Int. Explor. Mer. 24: 231-238 https://doi.org/10.1093/icesjms/24.2.231
  53. Yentch C.S. and D.W. Menzel, 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10: 221-231